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1.0 Introduction to Computer Graphics 

 

Today, we find computer graphics used routinely in such diverse areas as science, engineering, 

medicine, business, industry, government, art, entertainment, advertising, education, and training. 

A major use of computer graphics is in design processes, particularly for engineering and 

architectural systems, but almost all products are now computer designed. Computer-aided design 

(CAD) methods are now routinely used in the design of buildings, automobiles, aircraft, watercraft, 

spacecraft, computers, textiles, and many, many other products. 

 

There is virtually no area in which graphical displays cannot be used to some advantage, and so it is 

not surprising to find the use of computer graphics so widespread. Although early applications in 

engineering and science had to rely on expensive and cumbersome equipment, advances in 

computer technology have made interactive computer graphics a practical tool. 

 

2.0  Objectives 

On completing this unit, you would be able to: 

1. Explain the various application areas of computer graphics 

2. Understand the elements of a Graphic system. 

3. Explain Graphics processing unit and its various forms 

3.0  Main Content  

 

3.1 A Graphics System 

A computer graphics system is a computer system; as such, it must have all the components of a 

general-purpose computer system. Let us start with the high-level view of a graphics system, as 

shown in the block diagram in Figure 1.1(a). There are six major elements in the Graphic system: 

 

1. Input devices 

2. Central Processing Unit (CPU) 

3. Graphics Processing Unit (GPU) 

4. Memory 

5. Frame buffer 

6. Output devices 

This model is general enough to include workstations and personal computers, interactive game 

systems, mobile phones, GPS systems, and sophisticated image generation systems. Although most 

of the components are present in a standard computer, it is the way each element is specialized for 
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computer graphics that characterizes this diagram as a portrait of a graphics system. A complete 

graphic system is shown in figure 1.1(a). 

 

Figure 1.1(a): A graphic system (Engel et al., 1991) 

3.2 Applications of Computer Graphics 

The development of computer graphics has been driven both by the needs of the user community 

and by advances in hardware and software. The applications of computer graphics are many and 

varied; we can, however, divide them into four major areas: 

 

a) Display of information 

b) Design 

c) Simulation and animation 

d) User interfaces 

Although many applications span two or more of these areas, the development of the field was 

based on separate work in each. 

 

3.2.1 Display of Information  

Classical graphics techniques arose as a medium to convey information among people. Although 

spoken and written languages serve a similar purpose, the human visual system is unrivaled both as 

a processor of data and as a pattern recognizer. More than 4000 years ago, the Babylonians 

displayed floor plans of buildings on stones. More than 2000 years ago, the Greeks were able to 

convey their architectural ideas graphically, even though the related mathematics was not 

developed until the Renaissance. 

 

Today, the same type of information is generated by architects, mechanical designers, and drafts-

people using computer-based drafting systems. For centuries, cartographers have developed maps 

to display celestial and geographical information. Such maps were crucial to navigators as these 
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people explored the ends of the earth; maps are no less important today in fields such as geographic 

information systems. Now, maps can be developed and manipulated in real time over the Internet. 

 

Over the past 100 years, workers in the field of statistics have explored techniques for generating 

plots that aid the viewer in determining the information in a set of data. Now, we have computer 

plotting packages that provide a variety of plotting techniques and colour tools that can handle 

multiple large data sets. Nevertheless, it is still the humanôs ability to recognize visual patterns that 

ultimately allows us to interpret the information contained in the data. The field of information 

visualization is becoming increasingly more important as we have to deal with understanding 

complex phenomena from problems in bioinformatics to detecting security threats. Medical 

imaging poses interesting and important data-analysis problems. Modern imaging technologies in 

the field of medicineðsuch as computed tomography (CT), magnetic resonance imaging (MRI), 

ultrasound, and positron-emission tomography (PET)ðgenerate three-dimensional data that must 

be subjected to algorithmic manipulation to provide useful information.  

 

3.2.2 Design 

Professions such as engineering and architecture are concerned with design. Starting with a set of 

specifications, engineers and architects seek a cost-effective and esthetic solution that satisfies the 

specifications. Design is an iterative process. Rarely in the real world is a problem specified such 

that there is a unique optimal solution. Design problems are either overdetermined, such that they 

possess no solution that satisfies all the criteria; much less an optimal solution, or underdetermined, 

such that they have multiple solutions that satisfy the design criteria. Thus, the designer works in an 

iterative manner. a possible design is generated, tested it, and then the results are used as the basis 

for exploring other solutions. 

 

The power of the paradigm of humans interacting with images on the screen of a CRT was 

recognized by Ivan Sutherland over 40 years ago. Today, the use of interactive graphical tools in 

computer-aided design (CAD) pervades fields such as architecture and the design of mechanical 

parts and of very-large-scale integrated (VLSI) circuits. In many such applications, the graphics are 

used in a number of distinct ways. For example, in a VLSI design, the graphics provide an interface 

between the user and the design package, usually by means of such tools as menus and icons. In 

addition, after the user produces a possible design, other tools analyze the design and display the 

analysis graphically.  

 

3.2.3 Simulation and Animation 

Once graphics systems evolved to be capable of generating sophisticated images in real time, 

engineers and researchers began to use them as simulators. One of the most important uses has 

been in the training of pilots. Graphical flight simulators have proved both to increase safety and to 

reduce training expenses. The use of special VLSI chips has led to a generation of arcade games as 

sophisticated as flight simulators. Games and educational software for home computers are almost 
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as impressive as the flight simulators. The success of flight simulators led to the use of computer 

graphics for animation in the television, motion-picture, and advertising industries. Entire animated 

movies can now be made by computer at a cost less than that of movies made with traditional hand-

animation techniques. The use of computer graphics with hand animation allows the creation of 

technical and artistic effects that are not possible with either alone. Whereas computer animations 

have a distinct look, we can also generate photorealistic images by computer. Images that we see on 

television, in movies, and in magazines often are so realistic that we cannot distinguish computer-

generated or computer-altered images from photographs.  

 

The field of virtual reality (VR) has opened up many new horizons. A human viewer can be 

equipped with a display headset that allows her to see separate images with her right eye and her 

left eye so that she has the effect of stereoscopic vision. In addition, her body location and position, 

possibly including her head and finger positions, are tracked by the computer. She may have other 

interactive devices available, including force-sensing gloves and sound. She can then act as part of 

a computer-generated scene, limited only by the image-generation ability of the computer. For 

example, a surgical intern might be trained to do an operation in this way, or an astronaut might be 

trained to work in a weightless environment.  

 

3.2.4 User Interfaces 

Our interaction with computers has become dominated by a visual paradigm that includes windows, 

icons, menus, and a pointing device, such as a mouse. From a userôs perspective, windowing 

systems such as the X Window System, Microsoft Windows, and the Macintosh Operating System 

differ only in details. More recently, millions of people have become users of the Internet. Their 

access is through graphical network browsers, such as Firefox, Chrome, Safari, and Internet 

Explorer that use these same interface tools. We have become so accustomed to this style of 

interface that we often forget that what we are doing is working with computer graphics. Although 

we are familiar with the style of graphical user interface used on most workstations, advances in 

computer graphics have made possible other forms of interfaces.  

 

3.3 The CPU and the GPU 

In a simple system, there may be only one processor, the Central Processing Unit (CPU) of the 

system, which must do both the normal processing and the graphical processing. The main 

graphical function of the processor is to take specifications of graphical primitives (such as lines, 

circles, and polygons) generated by application programs and to assign values to the pixels in the 

frame buffer that best represent these entities. For example, a triangle is specified by its three 

vertices, but to display its outline by the three line segments connecting the vertices, the graphics 

system must generate a set of pixels that appear as line segments to the viewer. The conversion of 

geometric entities to pixel colours and locations in the frame buffer is known as rasterization, or 

scan conversion.  
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In early graphics systems, the frame buffer was part of the standard memory that could be directly 

addressed by the CPU. Today, virtually all graphics systems are characterized by special-purpose 

Graphics Processing Units (GPUs), custom-tailored to carry out specific graphics functions. The 

GPU can be either on the mother board of the system or on a graphics card. The frame buffer is 

accessed through the graphics processing unit and usually is on the same circuit board as the GPU. 

GPUs have evolved to where they are as complex as or even more complex than CPUs. They are 

characterized by both special-purpose modules geared toward graphical operations and a high 

degree of parallelismðrecent GPUs contain over 100 processing units, each of which is user 

programmable. GPUs are so powerful that they can often be used as mini supercomputers for 

general purpose computing.  

 

3.3.1 Graphics Processing Unit  

A Graphics Processing Unit or GPU (also occasionally called visual processing unit or VPU) is a 

specialized circuit designed to rapidly manipulate and alter memory in such a way so as to 

accelerate the building of images in a frame buffer intended for output to a display. GPUs are used 

in embedded systems, mobile phones, personal computers, workstations, and game consoles. 

Modern GPUs are very efficient at manipulating computer graphics, and their highly parallel 

structure makes them more effective than general-purpose CPUs for algorithms where processing 

of large blocks of data is done in parallel. In a personal computer, a GPU can be on a video card, or 

it can be on the motherboard, or in certain CPUs, on the CPU die. An example is the GeForce 

6600GT GPU shown in Figure 1.1(b). More than 90% of new desktop and notebook computers 

have integrated GPUs, which are usually far less powerful than those on a dedicated video card. 

 

 

 
Figure 1.1(b): GeForce 6600GT GPU 
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3.4 GPU forms 

There are various GPU forms characterized by their interfaces with the main board. The common 

ones are mentioned below. 

 

3.4.1 Dedicated graphics cards 

The GPUs of the most powerful class typically interface with the motherboard by means of an 

expansion slot such as PCI Express (PCIe) or Accelerated Graphics Port (AGP) and can usually be 

replaced or upgraded with relative ease, assuming the motherboard is capable of supporting the 

upgrade. A few graphics cards still use Peripheral Component Interconnect (PCI) slots, but their 

bandwidth is so limited that they are generally used only when a PCIe or AGP slot is not available. 

 

A dedicated GPU is not necessarily removable, nor does it necessarily interface with the 

motherboard in a standard fashion. The term "dedicated" refers to the fact that dedicated graphics 

cards have RAM that is dedicated to the card's use, not to the fact that most dedicated GPUs are 

removable. Dedicated GPUs for portable computers are most commonly interfaced through a non-

standard and often proprietary slot due to size and weight constraints. Such ports may still be 

considered PCIe or AGP in terms of their logical host interface, even if they are not physically 

interchangeable with their counterparts. 

 

3.4.2 Integrated graphics solutions 

Integrated graphics solutions, shared graphics solutions, or Integrated Graphics Processors (IGP) 

utilize a portion of a computer's system RAM rather than dedicated graphics memory. They are 

integrated into the motherboard. Exceptions are AMD's IGPs that use dedicated side-port memory 

on certain motherboards, and APUs, where they are integrated with the CPU die. Computers with 

integrated graphics account for 90% of all PC shipments. These solutions are less costly to 

implement than dedicated graphics solutions, but are less capable. Historically, integrated solutions 

were often considered unfit to play 3D games or run graphically intensive programs but could run 

less intensive programs such as Adobe Flash. Modern desktop motherboards often include an 

integrated graphics solution and have expansion slots available to add a dedicated graphics card 

later. 

 

As a GPU is extremely memory intensive, an integrated solution may find itself competing for the 

already relatively slow system RAM with the CPU, as it has minimal or no dedicated video 

memory. System RAM may be 2 GB/s to 16 GB/s, yet dedicated GPUs enjoy between 10 GB/s to 

over 300 GB/s of bandwidth depending on the model (for instance the GeForce GTX 590 and 

Radeon HD 6990 provide approximately 320 GB/s between dual memory controllers). Older 

integrated graphics chipsets lacked hardware transform and lighting, but newer ones include it 
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3.4.3 Hybrid solutions 

This newer class of GPUs competes with integrated graphics in the low-end desktop and notebook 

markets. The most common implementations of this are ATI's HyperMemory and NVIDIA's 

TurboCache. Hybrid graphics cards are somewhat more expensive than integrated graphics, but 

much less expensive than dedicated graphics cards. These share memory with the system and have 

a small dedicated memory cache, to make up for the high latency of the system RAM. 

Technologies within PCI Express can make this possible. While these solutions are sometimes 

advertised as having as much as 768MB of RAM, this refers to how much can be shared with the 

system memory. 

 

3.5 The Graphics pipeline 

In 3D computer graphics, the terms graphics pipeline or rendering pipeline most commonly refers 

to the current state of the art method of rasterization-based rendering as supported by commodity 

graphics hardware. The graphics pipeline typically accepts some representation of a three-

dimensional primitive as an input and results in a 2D raster image as output. OpenGL and Direct3D 

are two notable 3D graphic standards, both describing very similar graphic pipeline. 

 

The rendering pipeline is mapped onto current graphics acceleration hardware such that the input to 

the graphics card (GPU) is in the form of vertices. These vertices then undergo transformation and 

per-vertex lighting. At this point in modern GPU pipelines a custom vertex shader program can be 

used to manipulate the 3D vertices prior to rasterization. Once transformed and lit, the vertices 

undergo clipping and rasterization resulting in fragments as shown in figure 1.1(d). A second 

custom shader program can then be run on each fragment before the final pixel values are output to 

the frame buffer for display. 

 
FIGURE 1.1(c) Arithmetic pipeline (Ed Angel (1991) 

 
FIGURE 1.1(d) Geometric pipeline. (Ed Angel, 1991) 

 

The graphics pipeline is well suited to the rendering process because it allows the GPU to function 

as a stream processor since all vertices and fragments can be thought of as independent. This allows 



10 

 

all stages of the pipeline to be used simultaneously for different vertices or fragments as they work 

their way through the pipe. In addition to pipelining vertices and fragments, their independence 

allows graphics processors to use parallel processing units to process multiple vertices or fragments 

in a single stage of the pipeline at the same time. 

 

4.0  Conclusion 

A major use of computer graphics is in design processes, particularly for engineering and 

architectural systems, design of buildings, automobiles, aircraft, watercraft, spacecraft, computers, 

textiles, and many, many other products. 

 

5.0  Summary 

In this unit, we have studied Computer Graphics, its application areas, computer graphics systems 

and also Graphic processing units and its various forms. 

6.0   Tutor Marked Assignment 

1. What do you understand by Computer Graphics? 

2. Identify application areas of computer graphics. 

3. Draw a graphic system. 

4. Explain what GPU is meant for and write a short note and its various types. 
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1.0 Introduction to Bi-directional Reflection Distribution Function (BRDF) 

One of the most general means to characterize the reflection properties of a surface is by use of the 

bi-directional reflection distribution function (BRDF), a function which defines the spectral and 

spatial reflection characteristic of a surface. The BRDF of a surface is the ratio of reflected radiance 

to incident irradiance at a particular wavelength: 

 

where the subscripts i and r denote incident and reflected respectively, is the direction 

of light propagation, is the wavelength of light, L is radiance, and E is irradiance. 

 

2.0  Objectives 

On completing this unit, you would be able to: 

1. Understand the BRDFs 

2. Understand the application of BRDFs 

3. Understand the features of BRDF models. 

 

3.0 Main Content  

3.1 An overview of the BRDF 

To understand the concept of a BRDF and how BRDFs can be used to improve realism in 

interactive computer graphics, we begin by discussing what we know about light and how light 

interact with matter. In general, when light interacts with matter, a complicated light-matter 

dynamic occurs. This interaction depends on the physical characteristics of the light as well as the 

physical composition and characteristics of the matter. For example, a rough opaque surface such 

as sandpaper will reflect light differently than a smooth reflective surface such as a mirror. Figure 

1.2(a) shows a typical light-matter interaction scenario. 
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Figure 1.2(a): Light Interactions. 

From this figure, we make a couple of observations about light. First, when light makes contact 

with a material, three types of interactions may occur: light reflection, light absorption, and light 

transmittance. That is, some of the incident light is reflected, some of the light is transmitted, and 

another portion of the light is absorbed by the medium itself.  

 

Light incident at surface = light reflected + light absorbed + light transmitted 

 

For opaque materials, the majority of incident light is transformed into reflected light and absorbed 

light. As a result, when an observer views an illuminated surface, what is seen is reflected light, i.e. 

the light that is reflected towards the observer from all visible surface regions. A BRDF describes 

how much light is reflected when light makes contact with a certain material. Similarly, a BTDF 

(Bi-directional Transmission Distribution Function) describes how much light is transmitted when 

light makes contact with a certain material. 

 

In general, the degree to which light is reflected (or transmitted) depends on the viewer and light 

position relative to the surface normal and tangent. Consider, for example, a shiny plastic teapot 

illuminated by a white point light source. Since the teapot is made of plastic, some surface regions 

will show a shiny highlight when viewed by an observer. If the observer moves (i.e. changes view 

direction), the position of the highlight shifts. Similarly, if the observer and teapot both remain 

fixed, but the light source is moved, the highlight shifts. Since a BRDF a measure how light is 

reflected, it must capture this view and light-dependent nature of reflected light. Consequently, a 

BRDF is a function of incoming (light) direction and outgoing (view) direction relative to a local 

orientation at the light interaction point. 

 

Additionally, when light interacts with a surface, different wavelengths (colours) of light may be 

absorbed, reflected, and transmitted to varying degrees depending upon the physical properties of 

the material itself. This means that a BRDF is also a function of wavelength. 
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Finally, light interacts differently with different regions of a surface. This property, known as 

positional variance, is most noticeably observed in materials such as wood that reflect light in a 

manner that produces surface detail. Both the ringing and striping patterns often found in wood are 

indications that the BRDF for wood varies with the surface spatial position. Many materials exhibit 

this positional variance because they are not entirely composed of a single material. Instead, most 

real world materials are heterogeneous and have unique material composition properties which vary 

with the density and stochastic characteristics of the sub-materials from which they are comprised. 

 

Considering the dependence of a BRDF on the incoming and outgoing directions, the wavelength 

of light under consideration, and the positional variance, a general BRDF in functional notation can 

be written as  

 

Where ‗ is used to indicate that the BRDF depends on the wavelength under consideration, the 

parameters ‰Ὥȟ— i represent the incoming light direction in spherical coordinates, the 

parameters ‰ȟ—0 represent the outgoing reflected direction in spherical coordinates, and u and v 

represent the surface position parameterized in texture space 

 

 

Though a BRDF is truly a function of position, sometimes the positional variance is not included in 

a BRDF description. Instead, it is common to see a BRDF written as a function of incoming and 

outgoing directions and wavelength only (i.e. ἌἠἎἐⱦ (Ᵽ░ꜚ ░Ᵽꜚ  Such BRDFs are often called 

position-invariant or shift-invariant BRDFs. When the spatial position is not included as a 

parameter to the function, an assumption is made that the reflectance properties of a material do not 

vary with spatial position.  In general, this is only valid for homogenous materials. One way to 

introduce the positional variance is through the use of a detail texture. By adding or modulating the 

result of a BRDF lookup with a texture, it is possibly to reasonably approximate a spatially variant 

BRDF. 

 

For the remainder of this unit, we will denote a position-invariant BRDF in functional notation as 

ἌἠἎἐⱦ (Ᵽ░ꜚ ░Ᵽꜚ   
where ‰Ὥȟ—i, ‰ȟ—0 have the same meaning as before. 

 

When describing a BRDF in this functional notation, it is sometimes convenient to omit the 

‗  subscript for the sake of notation simplicity. When this is done, keep in mind that the values 

produced by a BRDF do depend on the wavelength or colour channel under consideration. In 

practice what this means is that in terms of the RGB colour convention, the value of the BRDF 

function must be determined separately for each colour channel (i.e. R, G, and B separately). For 

convenience, itôs usually preferred not to specify a particular colour channel in the subscript. The 
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implicit assumption is that the programmer knows that a BRDF value must be determined for each 

colour channel of interest separately. Given this slightly abbreviated form, the position-invariant 

BRDF associated with a single colour channel can be considered to be a function of 4 variables. 

When the RGB colour components are considered as a group, the BRDF is a three-component 

vector function. 

 

3.2 The Definition of a BRDF 

Up until this point, the exact definition of a BRDF has not been discussed. Suppose we are given an 

incoming light direction, wi, and an outgoing reflected direction, wo, each defined relative to a small 

surface element. A BRDF is defined as the ratio of the quantity of reflected light in direction wo, to 

the amount of light that reaches the surface from direction wi. To make this clear, letôs call the 

quantity of light reflected from the surface in direction wo, Lo, and the amount of light arriving from 

direction wi, Ei. Then a BRDF is given by 

 

Figure 1.2(b):  A surface element illuminated by a light source. 

Now consider figure 1.2(b). The figure shows a small surface element (i.e. a pixel/surface point) 

that is being illuminated by a point light source. The amount of light arriving from direction wi is 

proportional to the amount of light arriving at the differential solid angle. Suppose the light source 

in the figure has intensity Li. Since the differential solid angle is small, it is essentially a flat region 

on the hemisphere. As a result, the region is uniformly illuminated as the same quantity of light, Li, 

arrives for each position on the differential solid angle. So the total amount of incoming light 

arriving through the region is Li*dw. The only problem is that this amount of light is with respect to 

the differential solid angle and not the actual surface element under consideration. To determine the 

amount of light with respect to the surface element, the incoming light must be ñspread outò or 

projected onto the surface element. This projection is similar to that which happens with diffuse 

Lambertian lighting and is accomplished by modulating that amount by cos —i  = N * wi. This  

means   
 

As a result, a BRDF is given by 

Equation 1.2 
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From this definition, observe two interesting results. First, a BRDF is not bounded to the range [0, 

1] ï a common misconception about BRDFs. Although the ratio Lo to Li must be in [0, 1], the 

division by the cosine term in the denominator implies that a BRDF may have values larger than 1. 

Secondly, a BRDF is not a unit-less function. Since the BRDF definition above includes a division 

by the solid angle (which has units steradians (sr)), the units of a BRDF are inverse steradians (sr-1). 

 

 

 

3.3 Classes and Properties of BRDFs 

There are two classes of BRDFs and two important properties. BRDFs can be classified into two 

classes: isotropic BRDFs and anisotropic BRDFs. The two important properties of BRDFs are 

reciprocity and conservation of energy.   

 

The term óisotropicô is used to describe BRDFs that represent reflectance properties that are 

invariant with respect to rotation of the surface around the surface normal vector. Consider a small 

relatively smooth surface element and fix the light and viewer positions. If we were to rotate the 

surface about its normal, the BRDF value (and consequently the resulting illumination) would 

remain unchanged. Materials with this characteristic such as smooth plastics have isotropic BRDFs. 

 

Anisotropy, on the other hand, refers to BRDFs that describe reflectance properties that do exhibit 

change with respect to rotation of the surface around the surface normal vector. Some examples of 

materials that have anisotropic BRDFs are brushed metal, satin, and hair. In general, most real-

world BRDFs are anisotropic to some degree, but the notion of isotropic BRDFs is useful because 

many classes of analytical BRDF models fall within this class. In general, most real-world BRDFs 

are probably more isotropic than anisotropic though many real-world surfaces have subtle 

anisotropy. Any material that exhibits even the slightest anisotropic reflection has a BRDF that is 

anisotropic. BRDFs based on physical laws and considered to be physically plausible have two 

properties: reciprocity and conservation of energy. 
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Figure 1.2(c): The Reciprocity Principle 

 

The reciprocity property is illustrated in figure 1.2(c). Basically it says that if the sense of the 

traveling light is reversed, the value of the BRDF remains unchanged. That is, if the incoming and 

outgoing directions are swapped, the value of the BRDF does not change. Mathematically, this 

property is written as 

 
Figure 1.2(d): Conservation of Energy- The quantity of light reflected must be less than 

 or equal to the quantity of incident light.  

 

The conservation of energy constraint has to do with the scattering of light during the light-matter 

interaction. In general, this property states that when light from a single incoming direction makes 

contact with a surface and is reflected/scattered over the sphere of outgoing directions, the total 

quantity of light that is scattered cannot exceed the original quantity of light arriving at the surface. 

Figure 1.2(d) illustrates this property. For each one unit of light energy that arrives at a point, no 

more than one unit of light energy can be reflected in total to all possible outgoing directions.  

 

By considering the definition of a BRDF (the ratio of the reflected light to incident light divided by 

the projected solid angle), this means the sum over all outgoing directions of the BRDF times the 

projected solid angle must be less than one in order for the ratio of the total amount of reflected 

light to the incident light to be less than one. Mathematically, this is written as 
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When considering the continuous hemisphere of all outgoing reflected directions, the sum becomes 

an integral and this conservation property becomes 

 

 

3.4 Related functions 

1. The Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF) 

is a 6-dimensional function, , where describes a 2D location over an 

object's surface. 

 

2. The Bidirectional Texture Function (BTF) is appropriate for modeling non-flat 

surfaces, and has the same parameterization as the SVBRDF; however in contrast, the 

BTF includes non-local scattering effects like shadowing, masking, inter-reflections or 

subsurface scattering. The functions defined by the BTF at each point on the surface are 

thus called Apparent BRDFs. 

 

3. The Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF), 

is a further generalized 8-dimensional function in which light 

entering the surface may scatter internally and exit at another location. 

In all these cases, the dependence on wavelength has been ignored and binned into RGB channels. 

In reality, the BRDF is wavelength dependent, and to account for effects such as iridescence or 

luminescence the dependence on wavelength must be made explicit: fr(ɚi,ɤi,ɚo,ɤo). 

3.5 Physically based BRDFs 

Physically based BRDFs have additional properties, including, 

http://en.wikipedia.org/wiki/Bidirectional_texture_function
http://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function
http://en.wikipedia.org/wiki/Iridescence
http://en.wikipedia.org/wiki/Luminescence
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1. positivity:  

2. Obeying Helmholtz reciprocity: fr(ɤi,ɤo) = fr(ɤo,ɤi). 

3. conserving energy:  

3.6 Applications of BRDF 

The BRDF is a fundamental radiometric concept, and used in computer graphics for photorealistic 

rendering of synthetic scenes, as well as in computer vision for many inverse problems such as 

object recognition. 

3.6 Features of BRDF models 

BRDFs can be measured directly from real objects using calibrated cameras and light sources; 

however, many phenomenological and analytic models have been proposed including the 

Lambertian reflectance model frequently assumed in computer graphics. Some useful features of 

recent models include: 

1. accommodating anisotropic reflection 

2. editable using a small number of intuitive parameters 

3. accounting for Fresnel effects at grazing angles 

4. being well-suited to Monte Carlo methods. 

4.0  Conclusion 

This unit has presented some of the basic terminologies and concepts about BRDFs, its applications 

and useful features of recent models. The degree to which light is reflected (or transmitted) depends 

on the viewer and light position relative to the surface normal and tangent. BRDF is also a function 

of wavelength. 

 

5.0  Summary 

The bidirectional reflectance distribution function is a four-dimensional function that defines how 

light is reflected at an opaque surface and accordingly is used in computer graphics for 

photorealistic rendering of synthetic scenes, as well as in computer vision for many inverse 

problems such as object recognition. 

6.0   Tutor Marked Assignment 

1. What do you understand by BRDF? 

2. Identify Application areas and features of BRDFs. 

3. Explain the classes and properties of BRDFs 

4. Highlight the features of BRDF models. 

http://en.wikipedia.org/wiki/Helmholtz_reciprocity
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Anisotropic
http://en.wikipedia.org/wiki/Fresnel_equations
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision
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5. Differentiate between Isotropic BRDF and Anisotropic BRDF. 
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1.0  Introduction to Vectors 

Vectors are geometric objects that have a length and a direction. We can also talk about a vector's 

tail  (where it begins) and head (where it ends up). A vector is like a point, in that it is described by 

a set of coordinates in a given dimension. But there are differences: 

1. A point has an absolute position within a coordinate system. A vector has no position; 

the same vector can appear anywhere.  

2. A point has no dimension to it. A vector has a length as well as a direction.  

Vectors are very important in computer graphics. For example, they are needed to: 

1. Analyze shapes: find the point at which two lines intersect, the distance of a point to a 

line, or whether a shape is convex or concave.  

2. Determine visibility: find objects closest to the eye (ray tracing) or determine whether a 

plane is facing away from us (back-face culling).  

3. Calculate lighting effects: determine how much light hits a surface (illumination), how 

much of that light is seen by the viewer (reflection), and what other objects are reflected 

in that surface (ray tracing).  

2.0  Objectives 
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On completing this unit, you would be able to: 

1. Understand the what vectors are 

2. Understand dot products and cross products 

3.  Understand vector operators and how to utilize them. 

4.  Understand the properties of Dot and Cross Products of vectors 

3.0 Main Content  

3.1 Adding vectors and points 

Points and vectors can be used to define one another by adding and subtracting the coordinates. 

Given that P and Q are points and u and v are vectors, then 

1. P - Q is a vector with its tail at Q and its head at P  

2. P + v is a new point (P displaced by the quantities in v)  

3. u + v is another vector  

 

Coordinates are added and subtracted as follows: 

If a = (ax, ay, az) and b = (bx, by, bz) then  

a + b = (ax+ bx, ay+ by, az+ bz) and a - b = (ax - bx, ay - by, az - bz). 

 

For example, consider the illustration at left. Imagine that R 

= (2, 3, 1), Q = (4, 1, 1), and P = (7, 3, 1). Then 

1. u = Q - R = (2, -2, 0) and Q = R + u  

2. v = P - Q = (3, 2, 0) and P = Q + v  

u + v = (Q - R) + (P - Q) = P - R = (5, 0, 0)  

3.2 Other vector operations 

You can change the length of a vector by multiplying it with a scalar value. Given a scalar value s 

and a vector v = (vx, vy, vz) then sv = (svx, svy, svz). For example, if s = 0.5 and v = (4, 3, 0) then sv = 

(2, 1.5, 0). 
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You can find the length (or magnitude) of a vector using the Pythagorean Theorem. Given a vector 

v = (vx, vy, vz), the magnitude of v is |v| = sqrt(vx*vx, vy*vy, vz*vz). For example, if v = (4, 3, 0) then |v| 

= 5. 

A unit vector is a vector of length 1. For any vector, you can find a corresponding unit vector (with 

the same direction) by dividing each of the coordinate values by the magnitude of the original 

vector. In other words, given a vector v = (vx, vy, vz), the unit vector is (vx / |v|, vy / |v|, vz / |v|). For 

example, if v = (4, 3, 0) then the unit vector with the same direction is (4/5, 3/5, 0/5) = (0.8, 0.6, 0). 

3.3 Dot product 

The dot (or inner) product of 2 vectors produces a scalar value. The dot product is used to solve a 

number of important geometric problems in graphics. The dot product for 3-dimensional vectors is 

solved as follows: 

If u = (ux, uy, uz) and v = (vx, vy, vz) then  

uÅ v = uxvx + uyvy + uzvz. 

 

 

3.4 Properties of Dot products 

The dot product has the following properties: 

1. Symmetry: u Å v = v Å u  

2. Linearity: (u + w) Å v = (u Å v) + (w Å v)  

3. Homogeneity: (su) Å v = s(u Å v)  

4. |v| = sqrt(v Å v)  

The dot product can be used to determine the angle between two 

vectors. 

From the Pythagorean Theorem, we know that 

cos ɗ = ux / |u| and ux = cos ɗ* |u| 

sinɗ = uy / |u| and uy = sinɗ* |u| 
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Therefore,  

u Å v = cosɗ|u|cosű|v| + sinɗ|u|sinű|v|  

= |u||v|(cosɗcosű + sinɗsinű) 

= |u||v|cos(ɗ-ű) 

And so,  

cos(ɗ-ű) = (u Å v) / (|u||v|) 

There is no need to calculate the exact cosine to know 

whether the angle is acute, obtuse, or a right angle. 

Because |u||v| is always a positive value, the sign of 

cos(ɗ-ű) will take on the sign of uÅ v. So, 

uÅ v > 0 implies the angle is acute (-90Á < (ɗ-ű) < 90Á); 

uÅ v < 0 implies the angle is obtuse (90Á < (ɗ-ű) < 270Á); and 

uÅ v = 0 implies the angle is right  ((ɗ-ű) = 90Á or (ɗ-ű) = -90°), i.e. the vectors are perpendicular. 

3.5 Cross Product 

The cross (or vector) product of 2 vectors produces another vector which is perpendicular 

(orthogonal) to both of the vectors used to find it.  

The cross product is defined in terms of the standard unit vectors i, j, and k, where 

1. i = (1, 0, 0)  

2. j = (0, 1, 0)  

3. k = (0, 0, 1)  
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The cross product for 3-dimensional vectors is then solved as follows: 

If u = (ux, uy, uz) and v = (vx, vy, vz) then  

u x  v = ((uyvz - uzvy)i + (uzvx - uxvz)j + (uxvy - uyvx)k). 

This form can be hard to remember, and so we can also write the cross product as a determinant: 

  
  i  j K 

 
u x  v =  

 
 ux uy Uz 

 

  
 vx vy Vz 

 

3.6 Properties of Cross Products 

The cross product has the following properties: 

1. Antisymmetry: u x  v = -v x  u  

2. Linearity: u x  (v + w) = (u x  v) + (u x  w)  

3. Homogeneity: (su) x  v = s(u x  v)  

4. i x  j = k ; j x  k = i ; k x  i = j  

The result of u x  v is a vector that is perpendicular (orthogonal) to both u and v. 

The result of u x  v follows the right-hand rule:  

1. Place your right hand at u and curl your fingers toward v. Your hand should be 

enclosing the smaller angle (<= 180°) between u and v.  

2. Stick out your thumb: it points in the direction of u x  v.  

The length of u x  v equals the area of the parallelogram determined by u and v, which is  

|u x  v| = |u||v| * sinɗ 

where ɗ is the angle from u to v or v to u (whichever is less). 

4.0  Conclusion 

Vector graphics editors typically allow rotation, movement, mirroring, stretching, skewing, affine 

transformations, changing of z-order and combination of primitives into more complex objects. 

More sophisticated transformations include set operations on closed shapes (union, difference, 

intersection, etc.). 

5.0  Summary 
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In Vectors are geometric objects that have a length and a direction. Vectors are very important in 

computer graphics to analyze shapes, Determine visibility and Calculate lighting effects. 

6.0   Tutor Marked Assignment 

1. What do you understand by vectors? Differentiate between vectors and scalars. 

2. Identify the properties of Cross products and Dot products of vector 

3. Try these problems to test your understanding of this material. 

1. For each of the following, calculate the coordinates. Indicate whether the result is a 

point or a vector.  

1. v + u, where v = (-1, 0, 5) and u = (2, 1, 1)  

2. P + v, where P = (1, 2, 3) and v = (-1, -2, -3)  

3. P - Q, where P = (5, 5, 5) and Q = (1, 2, 3)  

2. For each of the following, calculate sv and |sv| when  

1. s = 3, v = (1, 1, 1)  

2. s = 0.25, v = (-4, 8, 2)  

3. For each of the following vectors v and u, calculate the dot product. What does the 

result tell you about the angle between the vectors?  

1. v = (1, 0, 0) and u = (0, 1, 0)  

2. v = (1, 1, -1) and u = (2, 1, 0)  

3. v = (-2, 0, 0) and u = (1, 1, 1)  

4. Calculate the unit normal vector for the polygon defined by points P0 = (1, 1, 1), P1 = 

(5, 1, 4) and P2 = (2, 1, 1).  

7.0  References/Further Reading 
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MODULE 2 ï Transformations, Camera models, Rasterization and Mapping techniques 

UNIT 1: Transformations. 
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1.0 Introduction to Transformations  

Transformations are one of the primary vehicles used in computer graphics to manipulate objects in 

three-dimensional space. Their development is motivated by the process of converting coordinates 

between frames, which results in the generation of a 4x4 matrix. We can generalize this process and 

develop matrices that implement various transformations in space. 

 

2.0  Objectives 

On completing this unit, you would be able to: 

1. Understand how transformations work  

2. Differentiate between 2D and 3D transformations 
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3. Identify classes of transformations. 

3.0 Main Content  

3.1 2D Transformations 
 

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several 

purposes: 

 

1. Change coordinate frames (world, window, viewport, device, etc). 

2. Compose objects of simple parts with local scale/position/orientation of one part 

defined with regard to other parts. For example, articulated objects. 

3. Use deformation to create new shapes. 

4. Useful for animation. 

 
There are three basic classes of transformations: 

 

i. Rigid body - Preserves distance and angles. 
 

Examples: translation and rotation. 
 

ii.  Conformal - Preserves angles. 
 

Examples: translation, rotation, and uniform scaling. 
 

iii.  Affine - Preserves parallelism. Lines remain lines. 
 

Examples: translation, rotation, scaling, shear, and reflection. 
 
 
Examples of transformations: 

 

1. Translation by  Vector   ᴼ : ὖ= ὖ+ ᴼ                 

 

1. Rotation by Clockwise  
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2. Uniform Scaling by Scalar :  

 

4ÙÐÅ ÅÑÕÁÔÉÏÎ ÈÅÒÅȢ 

3. Non-uniform Scaling by a and b:  

 

 

4. Shear by Scalar h:  

 

 

5. Reflection about the y-axis:  

 

3.2 Affine Transformations 
 

An affine transformation takes a point p̄ to q̄  according to  a linear 

transformation followed by a translation. You should understand the following proof 

 

Å The inverse of an affine transformation is also affine, assuming it exists. 
 

Proof: 
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         Note: 

The inverse of a 2D linear transformation is 

 
 
 

 
 
 

 
 

 

Å Lines and parallelism are preserved under affine transformations. 

 
           Proof:  

 

 
 

Å Given a closed region, the area under an affine transformation  
 

Note: 
 
 
 
 
 
 
 
 
 
 
 

Example: 

The matrix                   maps all points to the x-axis, so the area of any closed region will become 

Zero. We have det(A) = 0, which verifies that any closed regionôs area will  be scaled by zero 

Å A composition of affine transformations is still affine. 
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3.3    Homogeneous Coordinates 
 

Homogeneous coordinates are another way to represent points to simplify the way in which we 

express affine transformations. Normally, bookkeeping would become tedious when affine trans- 

formations of the form              are composed. With homogeneous coordinates, affine 

transformations become matrices, and composition of transformations is as simple as matrix 

multiplication. In future sections of the course we exploit this in much more powerful ways. 

With homogeneous coordinates, a point p̄  is augmented with a 1, to form 
 

All  points (Ŭp̄, Ŭ) represent the same point p̄  for real ŬÍ0 

 

Given pĔ in homogeneous coordinates, to get p̄, we divide pĔ by its last component and discard the 

last component. 

 

Example: 

The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point 

(1, 2). Itôs the orientation of pĔ that matters, not its length. 
 
 

Many transformations become linear in homogeneous coordinates, including affine 

transformations.  

 
To produce qĔ rather than q̄, we can add a row to the matrix: 

 

This is linear! Bookkeeping becomes simple under composition. 
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1 

 
 
 
 
 

 
 
With homogeneous coordinates, the following properties of affine transformations become 

apparent: 

1. Affine transformations are associative. 

For affine transformations F1, F2, and F3, 

 

(F3 Ј F2) Ј F1 = F3 Ј (F2 Ј F1). 

2. Affine transformations are not commutative. 

For affine transformations F1 and F2, 

F2 Ј F1 = F1 Ј F2. 

 

3.4 Uses and Abuses of Homogeneous Coordinates 
 

Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot 

be treated in quite the same way.  For example, consider the midpoint between two points p̄1 = 

(1, 1) and p̄2 = (5, 5).  The midpoint is (p̄1 + p̄2)/2 = (3, 3).  We can represent these points in 

homogeneous coordinates as pĔ1   = (1, 1, 1) and pĔ2   = (5, 5, 1).  Directly applying the same 

computation as above gives the same resulting point: (3, 3, 1).  

 

However, we can also represent these points as pĔƶ = (2, 2, 2) and pĔƶ= (5, 5, 1).  We then have 

(pĔƶ+pĔƶ )/2 =(7/2, 7/2, 3/2) which corresponds to the Cartesian point (7/3, 7/3).  This is a 

different point, and illustrates that we cannot blindly apply geometric operations to homogeneous 

coordinates. The simplest solution is to always convert homogeneous coordinates to Cartesian 

coordinates. That said, there are several important operations that can be performed correctly in 

terms of homogeneous coordinates, as follows. 

3.4.1   Affine transformations:  

An important case in the previous section is applying an affine trans- formation to a point in 

homogeneous coordinates: 
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It is easy to see that this operation is correct, since rescaling pĔ does not change the result: 

 

Which is the same geometric point as qĔ = (xǋ, yǋ,1)T 

 

3 . 4 . 2  Vectors:   We can represent a vector                      in homogeneous coordinates by setting 

the last element of the vector to be zero:                            However, when adding a vector to a 

point, the point must have the third component to be 1. 

 

 

 

The result is clearly incorrect if  the third component of the vector is not 1 

 

 

 

 

 

 

3.5 Hierarchical Transformations 
 

It is often convenient to model objects as hierarchically connected parts. For example, a robot arm 

might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the 

upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would affect 

the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper 

arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the 

palm would be the parent to all of the fingers. 

 

 

 

Homogeneous coordinates are a representation of points in projective geometry. 
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Each part in the hierarchy can be modeled in its own local coordinates, independent of the other 

parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and 

so on.  Rigid body transformations are then applied to each part relative to its parent to achieve 

the proper alignment and pose of the object. For example, the fingers are positioned to be in the 

appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm 

coordinates, and the process continues up the hierarchy. Then a transformation applied to upper 

arm coordinates is also applied to all parts down the hierarchy. 

 

3.6 Transformations in OpenGL 

OpenGL manages two 4 × 4 transformation matrices: the modelview matrix, and the projection 

matrix. Whenever you specify geometry (using glVertex ), the vertices are transformed by the 

current modelview matrix and then the current projection matrix. Hence, you donôt have to perform 

these transformations yourself. You can modify the entries of these matrices at any time. OpenGL 

provides several utilities for modifying these matrices. The modelview matrix is normally used to 

represent geometric transformations of objects; the projection matrix is normally used to store the 

camera transformation. For now, weôll  focus just on the modelview matrix, and discuss the camera 

transformation later. 

 

To modify the current matrix, first specify which matrix is going to be manipulated: use 

glMatrixMode (GL  MODE)  to modify the modelview matrix. The modelview matrix can then 

be initialized to the identity with glLoadIdentity() . The matrix can be manipulated by 

directly filling  its values, multiplying it by an arbitrary matrix, or using the functions OpenGL 

provides to multiply the matrix by specific transformation matrices (glRotate , glTranslate , 

and glScale ). Note that these transformations right -multiply  the current matrix; this can be 

confusing since it means that you specify transformations in the reverse of the obvious order.   

 

OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the 

modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and 

popping matrices on the stack. The following example draws an upper arm and forearm with 

shoulder and elbow joints.  The current model view matrix is pushed onto the stack and popped 

at the end of the rendering, so, for example, another arm could be rendered without the 
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transformations from rendering this arm affecting its model view matrix.  Since each OpenGL 

transformation is applied by multiplying a matrix on the right-hand side of the modelview matrix, 

the transformations occur in reverse order. Here, the upper arm is translated so that its shoulder 

position is at the origin, then it is rotated, and finally it is translated so that the shoulder is in its 

appropriate world-space position. Similarly, the forearm is translated to rotate about its elbow 

position, and then it is translated so that the elbow matches its position in upper arm coordinates. 

Below is a program written in OpenGL that implements what has been illustrated above. 

 

OpenGL Program: 
glPus

hMatr

ix();  

 
glTranslatef(worldShoulderX,  worldShoulderY,  

0.0f);  

drawShoulde

rJoint();  

glRotatef(shoulderRotation,  0.0f,  0.0f,  

1.0f);  

glTranslatef( - upperArmShoulderX,  - upperArmShoulderY,  

0.0f);  

drawUpperAr

mShape();  

 
glTranslatef(upperArmElbowX,  upperArmElbowY,  

0.0f);  

 

drawElbowJoint();  

glRotatef(elbowRotation,  0.0f,  0.0f,  1.0f); 

glTranslatef( - forearmElbowX,  - forearmElbowY,  0.0f); 

drawForearmShape();  

 
glPopMatrix();  

4.0  Conclusion 

Transformation can change vectors in a variety of ways that are useful. In particular, it can be used 

to scale, rotate, and shear. Every matrix can be decomposed via SVD into a rotation times a scale 

times another rotation. An important class of transforms is rigid-body transforms. These are 

composed only of translations and rotations, so they have no stretching or shrinking of the objects. 

Such transforms will have a pure rotation. 

 

5.0  Summary 
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Transformations are used to manipulate objects in three-dimensional space. The three basic classes 

of transformations are rigid body, conformal and affine transformations. 

 

6.0   Tutor Marked Assignment 

1.0 Explain how transformations work  

2.0 What is affine transformation? 

3.0  Identify and explain various classes of transformations with diagrams 

4.0 What is 3D transformation? 

5.0 Explain projective transformations. 

6.0  Explain the following terms in Transformation 

i. Rotation 

ii.  Scaling 

iii.  Shearing 

iv. Reflection and 

v. Orthogonal projections. 

 

7.0  References/Further Reading 
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1.0 Introduction to camera models 

Most modern cameras use lens to focus light onto the view plane (i.e., the sensory surface). This is 

done so that one can capture enough light in a sufficiently short period of time that the objects do not 

move appreciably, and the image is bright enough to show significant detail over a wide range of 

intensities and contrasts. 

 

In a conventional camera, the view plane contains either photo-reactive chemical; in a digital 

camera, the view plane contains a charge-coupled device (CCD) array. (Some cameras use a 
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CMOS-based sensor instead of a CCD). In the human eye, the view plane is a curved surface called 

the retina, and contains a dense array of cells with photo-reactive molecules. 

 

2.0 Objectives 

On completing this unit, you would be able to: 

1. Understand the Thin lens and Pin-hole Camera Models. 

2. Understand Projections 

3. Understand projections of a triangle. 

 

3.0 Main Content  

3.1 Thin  Lens Model 

Lens models can be quite complex, especially for compound lens found in most cameras. Here we 

consider perhaps the simplest case, known widely as the thin lens model. In the thin lens model, 

rays of light emitted from a point travel along paths through the lens, converging at a point behind 

the lens.  The key quantity governing this behaviour is called the focal length of the lens.  The 

focal length, |f |, can be defined as distance behind the lens to which rays from an infinitely distant 

source converge in focus. 

 

 

 

Figure 2.2(a): Thin lens models 

More generally, for the thin lens model, if  z1 is the distance from the center of the lens (i.e., the 

nodal point) to a surface point on an object, then for a focal length |f |, the rays from that surface 

point will  be in focus at a distance z0 behind the lens center, where z1 and z0 satisfy the thin lens 

equation
          1 

       |f | 

1 1 
= + 

z0 z1 
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3.2 Pinhole Camera Model 

The pinhole camera model describes the mathematical relationship between the coordinates of a 

3D point and its projection onto the image plane of an ideal pinhole camera, where the camera 

aperture is described as a point and no lenses are used to focus light. The model does not include, 

for example, geometric distortions or blurring of unfocused objects caused by lenses and finite 

sized apertures. It also does not take into account that most practical cameras have only discrete 

image coordinates. This means that the pinhole camera model can only be used as a first order 

approximation of the mapping from a 3D scene to a 2D image. Its validity depends on the quality 

of the camera and, in general, decreases from the center of the image to the edges as lens distortion 

effects increase. 

Some of the effects that the pinhole camera model does not take into account can be compensated 

for, for example by applying suitable coordinate transformations on the image coordinates, and 

others effects are sufficiently small to be neglected if a high quality camera is used. This means that 

the pinhole camera model often can be used as a reasonable description of how a camera depicts a 

3D scene, for example in computer vision and computer graphics. 

 
 

A pinhole camera is an idealization of the thin lens as aperture shrinks to zero. 

 
view plane  

 
 
 
 
 
 
infinitesimal 

pinhole 
 

 
 

Figure 2.2(b): Light from a point travels along a single straight path through a pinhole onto the 

view plane. The object is imaged upside-down on the image plane. 

 

 

We use a right-handed coordinate system for the camera, with the x-axis as the horizontal direction 

and the y-axis as the vertical direction shown in figure 2.2(c) . This means that the optical axis 

(gaze direction) is the negative z-axis. 

 

y 
 
 

-z 
 
 
 

x 
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z 

Figure 2.2(c): the right-hand coordinate. 

The image you would get corresponds to drawing a ray from the eye position and intersecting it 

with the window. This is equivalent to the pinhole camera model, except that the view plane is in 

front of the eye instead of behind it, and the image appears right side-up, rather than upside down. 

(The eye point here replaces the pinhole). To see this, consider tracing rays from scene points 

through a view plane behind the eye point and one in front of it. 

 

The earliest cameras were room-sized pinhole cameras, called camera obscuras. You would 

walk in the room and see an upside-down projection of the outside world on the far wall.  

The word camera is Latin for ñroom;ò camera obscura means ñdark room.ò 
 
 
 
 
 
 
 
 
 

Figure 2.2(d): 18th-century camera obscuras. The camera on the right uses a mirror in the roof to 

project images of the world onto the table, and viewers may rotate the mirror. 

 

3.3 Camera Projections 
 

Consider a point p̄  in 3D space oriented with the camera at the origin, which we want to project 

onto the view plane.  To project py to y, we can use similar triangles to get.  

This is perspective projection. 

 

Note that f < 0, and the focal length is |f |. 

 

 

 

In perspective projection, distant objects appear smaller than near objects: 

 

p
z
 

 

y 

p
y
 

 
 

z 
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f 
pinhole image 

 

Figure 2.2 (e): Perspective Projection
 

3.4 Orthographic  Projection 
 

For objects sufficiently far away, rays are nearly parallel, and variation in pz is insignificant. 
 

 
 

Figure 2.2(f): Here, the baseball players appear to be about the same height in pixels, even 

though the batter is about 60 feet away from the pitcher. Although this is an example of 

perspective projection, the camera is so far from the players (relative to the camera focal length) 

that they appear to be roughly the same size. 

 
In the limit, y = Ŭpy for some real scalar Ŭ. This is orthographic projection: 

 

y 
 

 
 
 
 

z 
 

image 
 

Figure 2.2(g): orthographic projection 

 

3.5 Camera Position and Orientation  
 

Assume camera coordinates have their origin at the ñeyeò (pinhole) of the camera, ē. 
 

 

y v 
 

u 
g  

e
 

w 



 

43 
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z 
 

                                    Figure 2.2(h): camera positioning 

 
Let --g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera 

z-axis) is 

We need two more orthogonal vectors --u and --v to specify a camera coordinate frame, with 

 ᴼand  ᴼ parallel to the view plane.  It may be unclear how to choose them directly.  However, we 

can instead specify an ñupò direction. Of course this up direction will  not be perpendicular to the 

gaze direction. 

 

Let -- ᴼbe the ñupò direction (e.g., toward the sky so -- ᴼ= (0, 1, 0)). Then, we want --v to be the closest 

vector in the view-plane to -- ᴼ.  This is really just the projection of -- ᴼ onto the view plane.  

Therefore, --u must be perpendicular to -- ᴼ and ᴼ. In fact, with these definitions it is easy to show that --

u must also be perpendicular to ᴼ, so one way to compute --u and --v from -- ᴼ and --g is as follows:

 

 

Of course, we could have used many different ñupò directions, so long as --t × w-- = 0. 

 

Using these three basis vectors, we can define a camera coordinate system, in which 3D points are 

represented with respect to the cameraôs position and orientation. The camera coordinate system 

has its origin at the eye point ē  and has basis vectors --u, --v, and w-- , corresponding to the x, y, and z 

axes in the cameraôs local coordinate system. This explains why we chose w-- to point away from 

the image plane: the right-handed coordinate system requires that z (and, hence, w-- ) point away 

from the image plane. 

 

Now that we know how to represent the camera coordinate frame within the world coordinate 

frame we and need to explicitly formulate the rigid transformation from world to camera 
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coordinates. With this transformation and its inverse, we can easily express points either in world 

coordinates or camera coordinates (both of which are necessary). 

 

To get an understanding of the transformation, it might be helpful to remember the mapping from 

points in camera coordinates to points in world coordinates. For example, we have the following 

correspondences between world coordinates and camera coordinates: Using such correspondences 

 

Table 2.2: world coordinates and transformation coordinates 

It is not hard to show that for a general point expressed in camera coordinates as the 

corresponding point in world coordinates is given by 
 


