
1

NATI ONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CIT 671

COURSE TITLE: INTRODUCTION TO COMPUTER GRAPHICS AND

ANIMATION

2

MODULE 1 ï Introduction to Computer Graphics and Animation

UNIT 1: Introduction to computer graphics and GPU

Contents Pages

1.0 Introduction to computer graphicséé.éééééééééééééééééé..2

2.0 Objectiveséééééééééééééééééééééééééééééé2

3.0 Main Contentéééééééééé..éééééééééééééééééé.2

 3.1 A Graphics System éé.ééé.ééééééééééééééééé....2

3.2 Application of computer graphicsééééééééééééééééééé..3

3.3 The CPU and the GPUéééééééééééééééééééééé..5

3.4 GPU formséééééééééééééééééééééééééé....7

3.5 The Graphics pipelineéééééééééééééééééééééé....8

4.0 Conclusionééééééééééééééééééééééééééé...éé..9

5.0 Summaryééééééééééééééééééééééééééééééé9

6.0 Tutor Marked Assignmentééééééééééééééééééééééé.....9

7.0 References/Further

Readingéééééééééééééééééééééééééé.éé9

3

1.0 Introduction to Computer Graphics

Today, we find computer graphics used routinely in such diverse areas as science, engineering,

medicine, business, industry, government, art, entertainment, advertising, education, and training.

A major use of computer graphics is in design processes, particularly for engineering and

architectural systems, but almost all products are now computer designed. Computer-aided design

(CAD) methods are now routinely used in the design of buildings, automobiles, aircraft, watercraft,

spacecraft, computers, textiles, and many, many other products.

There is virtually no area in which graphical displays cannot be used to some advantage, and so it is

not surprising to find the use of computer graphics so widespread. Although early applications in

engineering and science had to rely on expensive and cumbersome equipment, advances in

computer technology have made interactive computer graphics a practical tool.

2.0 Objectives

On completing this unit, you would be able to:

1. Explain the various application areas of computer graphics

2. Understand the elements of a Graphic system.

3. Explain Graphics processing unit and its various forms

3.0 Main Content

3.1 A Graphics System

A computer graphics system is a computer system; as such, it must have all the components of a

general-purpose computer system. Let us start with the high-level view of a graphics system, as

shown in the block diagram in Figure 1.1(a). There are six major elements in the Graphic system:

1. Input devices

2. Central Processing Unit (CPU)

3. Graphics Processing Unit (GPU)

4. Memory

5. Frame buffer

6. Output devices

This model is general enough to include workstations and personal computers, interactive game

systems, mobile phones, GPS systems, and sophisticated image generation systems. Although most

of the components are present in a standard computer, it is the way each element is specialized for

4

computer graphics that characterizes this diagram as a portrait of a graphics system. A complete

graphic system is shown in figure 1.1(a).

Figure 1.1(a): A graphic system (Engel et al., 1991)

3.2 Applications of Computer Graphics

The development of computer graphics has been driven both by the needs of the user community

and by advances in hardware and software. The applications of computer graphics are many and

varied; we can, however, divide them into four major areas:

a) Display of information

b) Design

c) Simulation and animation

d) User interfaces

Although many applications span two or more of these areas, the development of the field was

based on separate work in each.

3.2.1 Display of Information

Classical graphics techniques arose as a medium to convey information among people. Although

spoken and written languages serve a similar purpose, the human visual system is unrivaled both as

a processor of data and as a pattern recognizer. More than 4000 years ago, the Babylonians

displayed floor plans of buildings on stones. More than 2000 years ago, the Greeks were able to

convey their architectural ideas graphically, even though the related mathematics was not

developed until the Renaissance.

Today, the same type of information is generated by architects, mechanical designers, and drafts-

people using computer-based drafting systems. For centuries, cartographers have developed maps

to display celestial and geographical information. Such maps were crucial to navigators as these

5

people explored the ends of the earth; maps are no less important today in fields such as geographic

information systems. Now, maps can be developed and manipulated in real time over the Internet.

Over the past 100 years, workers in the field of statistics have explored techniques for generating

plots that aid the viewer in determining the information in a set of data. Now, we have computer

plotting packages that provide a variety of plotting techniques and colour tools that can handle

multiple large data sets. Nevertheless, it is still the humanôs ability to recognize visual patterns that

ultimately allows us to interpret the information contained in the data. The field of information

visualization is becoming increasingly more important as we have to deal with understanding

complex phenomena from problems in bioinformatics to detecting security threats. Medical

imaging poses interesting and important data-analysis problems. Modern imaging technologies in

the field of medicineðsuch as computed tomography (CT), magnetic resonance imaging (MRI),

ultrasound, and positron-emission tomography (PET)ðgenerate three-dimensional data that must

be subjected to algorithmic manipulation to provide useful information.

3.2.2 Design

Professions such as engineering and architecture are concerned with design. Starting with a set of

specifications, engineers and architects seek a cost-effective and esthetic solution that satisfies the

specifications. Design is an iterative process. Rarely in the real world is a problem specified such

that there is a unique optimal solution. Design problems are either overdetermined, such that they

possess no solution that satisfies all the criteria; much less an optimal solution, or underdetermined,

such that they have multiple solutions that satisfy the design criteria. Thus, the designer works in an

iterative manner. a possible design is generated, tested it, and then the results are used as the basis

for exploring other solutions.

The power of the paradigm of humans interacting with images on the screen of a CRT was

recognized by Ivan Sutherland over 40 years ago. Today, the use of interactive graphical tools in

computer-aided design (CAD) pervades fields such as architecture and the design of mechanical

parts and of very-large-scale integrated (VLSI) circuits. In many such applications, the graphics are

used in a number of distinct ways. For example, in a VLSI design, the graphics provide an interface

between the user and the design package, usually by means of such tools as menus and icons. In

addition, after the user produces a possible design, other tools analyze the design and display the

analysis graphically.

3.2.3 Simulation and Animation

Once graphics systems evolved to be capable of generating sophisticated images in real time,

engineers and researchers began to use them as simulators. One of the most important uses has

been in the training of pilots. Graphical flight simulators have proved both to increase safety and to

reduce training expenses. The use of special VLSI chips has led to a generation of arcade games as

sophisticated as flight simulators. Games and educational software for home computers are almost

6

as impressive as the flight simulators. The success of flight simulators led to the use of computer

graphics for animation in the television, motion-picture, and advertising industries. Entire animated

movies can now be made by computer at a cost less than that of movies made with traditional hand-

animation techniques. The use of computer graphics with hand animation allows the creation of

technical and artistic effects that are not possible with either alone. Whereas computer animations

have a distinct look, we can also generate photorealistic images by computer. Images that we see on

television, in movies, and in magazines often are so realistic that we cannot distinguish computer-

generated or computer-altered images from photographs.

The field of virtual reality (VR) has opened up many new horizons. A human viewer can be

equipped with a display headset that allows her to see separate images with her right eye and her

left eye so that she has the effect of stereoscopic vision. In addition, her body location and position,

possibly including her head and finger positions, are tracked by the computer. She may have other

interactive devices available, including force-sensing gloves and sound. She can then act as part of

a computer-generated scene, limited only by the image-generation ability of the computer. For

example, a surgical intern might be trained to do an operation in this way, or an astronaut might be

trained to work in a weightless environment.

3.2.4 User Interfaces

Our interaction with computers has become dominated by a visual paradigm that includes windows,

icons, menus, and a pointing device, such as a mouse. From a userôs perspective, windowing

systems such as the X Window System, Microsoft Windows, and the Macintosh Operating System

differ only in details. More recently, millions of people have become users of the Internet. Their

access is through graphical network browsers, such as Firefox, Chrome, Safari, and Internet

Explorer that use these same interface tools. We have become so accustomed to this style of

interface that we often forget that what we are doing is working with computer graphics. Although

we are familiar with the style of graphical user interface used on most workstations, advances in

computer graphics have made possible other forms of interfaces.

3.3 The CPU and the GPU

In a simple system, there may be only one processor, the Central Processing Unit (CPU) of the

system, which must do both the normal processing and the graphical processing. The main

graphical function of the processor is to take specifications of graphical primitives (such as lines,

circles, and polygons) generated by application programs and to assign values to the pixels in the

frame buffer that best represent these entities. For example, a triangle is specified by its three

vertices, but to display its outline by the three line segments connecting the vertices, the graphics

system must generate a set of pixels that appear as line segments to the viewer. The conversion of

geometric entities to pixel colours and locations in the frame buffer is known as rasterization, or

scan conversion.

7

In early graphics systems, the frame buffer was part of the standard memory that could be directly

addressed by the CPU. Today, virtually all graphics systems are characterized by special-purpose

Graphics Processing Units (GPUs), custom-tailored to carry out specific graphics functions. The

GPU can be either on the mother board of the system or on a graphics card. The frame buffer is

accessed through the graphics processing unit and usually is on the same circuit board as the GPU.

GPUs have evolved to where they are as complex as or even more complex than CPUs. They are

characterized by both special-purpose modules geared toward graphical operations and a high

degree of parallelismðrecent GPUs contain over 100 processing units, each of which is user

programmable. GPUs are so powerful that they can often be used as mini supercomputers for

general purpose computing.

3.3.1 Graphics Processing Unit

A Graphics Processing Unit or GPU (also occasionally called visual processing unit or VPU) is a

specialized circuit designed to rapidly manipulate and alter memory in such a way so as to

accelerate the building of images in a frame buffer intended for output to a display. GPUs are used

in embedded systems, mobile phones, personal computers, workstations, and game consoles.

Modern GPUs are very efficient at manipulating computer graphics, and their highly parallel

structure makes them more effective than general-purpose CPUs for algorithms where processing

of large blocks of data is done in parallel. In a personal computer, a GPU can be on a video card, or

it can be on the motherboard, or in certain CPUs, on the CPU die. An example is the GeForce

6600GT GPU shown in Figure 1.1(b). More than 90% of new desktop and notebook computers

have integrated GPUs, which are usually far less powerful than those on a dedicated video card.

Figure 1.1(b): GeForce 6600GT GPU

8

3.4 GPU forms

There are various GPU forms characterized by their interfaces with the main board. The common

ones are mentioned below.

3.4.1 Dedicated graphics cards

The GPUs of the most powerful class typically interface with the motherboard by means of an

expansion slot such as PCI Express (PCIe) or Accelerated Graphics Port (AGP) and can usually be

replaced or upgraded with relative ease, assuming the motherboard is capable of supporting the

upgrade. A few graphics cards still use Peripheral Component Interconnect (PCI) slots, but their

bandwidth is so limited that they are generally used only when a PCIe or AGP slot is not available.

A dedicated GPU is not necessarily removable, nor does it necessarily interface with the

motherboard in a standard fashion. The term "dedicated" refers to the fact that dedicated graphics

cards have RAM that is dedicated to the card's use, not to the fact that most dedicated GPUs are

removable. Dedicated GPUs for portable computers are most commonly interfaced through a non-

standard and often proprietary slot due to size and weight constraints. Such ports may still be

considered PCIe or AGP in terms of their logical host interface, even if they are not physically

interchangeable with their counterparts.

3.4.2 Integrated graphics solutions

Integrated graphics solutions, shared graphics solutions, or Integrated Graphics Processors (IGP)

utilize a portion of a computer's system RAM rather than dedicated graphics memory. They are

integrated into the motherboard. Exceptions are AMD's IGPs that use dedicated side-port memory

on certain motherboards, and APUs, where they are integrated with the CPU die. Computers with

integrated graphics account for 90% of all PC shipments. These solutions are less costly to

implement than dedicated graphics solutions, but are less capable. Historically, integrated solutions

were often considered unfit to play 3D games or run graphically intensive programs but could run

less intensive programs such as Adobe Flash. Modern desktop motherboards often include an

integrated graphics solution and have expansion slots available to add a dedicated graphics card

later.

As a GPU is extremely memory intensive, an integrated solution may find itself competing for the

already relatively slow system RAM with the CPU, as it has minimal or no dedicated video

memory. System RAM may be 2 GB/s to 16 GB/s, yet dedicated GPUs enjoy between 10 GB/s to

over 300 GB/s of bandwidth depending on the model (for instance the GeForce GTX 590 and

Radeon HD 6990 provide approximately 320 GB/s between dual memory controllers). Older

integrated graphics chipsets lacked hardware transform and lighting, but newer ones include it

9

3.4.3 Hybrid solutions

This newer class of GPUs competes with integrated graphics in the low-end desktop and notebook

markets. The most common implementations of this are ATI's HyperMemory and NVIDIA's

TurboCache. Hybrid graphics cards are somewhat more expensive than integrated graphics, but

much less expensive than dedicated graphics cards. These share memory with the system and have

a small dedicated memory cache, to make up for the high latency of the system RAM.

Technologies within PCI Express can make this possible. While these solutions are sometimes

advertised as having as much as 768MB of RAM, this refers to how much can be shared with the

system memory.

3.5 The Graphics pipeline

In 3D computer graphics, the terms graphics pipeline or rendering pipeline most commonly refers

to the current state of the art method of rasterization-based rendering as supported by commodity

graphics hardware. The graphics pipeline typically accepts some representation of a three-

dimensional primitive as an input and results in a 2D raster image as output. OpenGL and Direct3D

are two notable 3D graphic standards, both describing very similar graphic pipeline.

The rendering pipeline is mapped onto current graphics acceleration hardware such that the input to

the graphics card (GPU) is in the form of vertices. These vertices then undergo transformation and

per-vertex lighting. At this point in modern GPU pipelines a custom vertex shader program can be

used to manipulate the 3D vertices prior to rasterization. Once transformed and lit, the vertices

undergo clipping and rasterization resulting in fragments as shown in figure 1.1(d). A second

custom shader program can then be run on each fragment before the final pixel values are output to

the frame buffer for display.

FIGURE 1.1(c) Arithmetic pipeline (Ed Angel (1991)

FIGURE 1.1(d) Geometric pipeline. (Ed Angel, 1991)

The graphics pipeline is well suited to the rendering process because it allows the GPU to function

as a stream processor since all vertices and fragments can be thought of as independent. This allows

10

all stages of the pipeline to be used simultaneously for different vertices or fragments as they work

their way through the pipe. In addition to pipelining vertices and fragments, their independence

allows graphics processors to use parallel processing units to process multiple vertices or fragments

in a single stage of the pipeline at the same time.

4.0 Conclusion

A major use of computer graphics is in design processes, particularly for engineering and

architectural systems, design of buildings, automobiles, aircraft, watercraft, spacecraft, computers,

textiles, and many, many other products.

5.0 Summary

In this unit, we have studied Computer Graphics, its application areas, computer graphics systems

and also Graphic processing units and its various forms.

6.0 Tutor Marked Assignment

1. What do you understand by Computer Graphics?

2. Identify application areas of computer graphics.

3. Draw a graphic system.

4. Explain what GPU is meant for and write a short note and its various types.

7.0 References/Further Reading

1. Jeffrey J. McConnell (2006). Computer Graphics: Theory into Practice. Jones & Bartlett

Publishers. ISBN:0-7637-2250-2

2. R. D. Parslow, R. W. Prowse, Richard Elliot Green (1969). Computer Graphics: Techniques

and Applications. ISBN-13: 978-0306200168

3. Peter Shirley and others. (2005). Fundamentals of computer graphics. A.K. Peters, Ltd. ISBN-

13: 978:1568814692

4. David Salomon (1999). Computer Graphics and Geometric Modeling, Springer ISBN 0-387-

 98682-0.

5. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

6. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd Edition),

 Prentice Hall, 1997, ISBN: 0135309247

11

MODULE 1 ï Introduction to Computer Graphics and Animation

UNIT 2: Illumination: The BRDF.

Contents Pages

1.0 Introduction to BRDFéééééééé...éé.éééééééééééééé..11

2.0 Objectivesééééééééééééééééééééééééééééé.....11

3.0 Main Contentéééééééééééééééééééééééé....ééé....11

 3.1 An overview of the BRDFéééééééééééééééééééé....11

 3.2 The definition of BRDFééééé.éééééééééééééééé...13

3.3 Classes and properties of BRDFséééééééééééééééééééé..14

3.4 Related functionsééééééééééééééééé...é...éééé....15

3.5 Physically based BRDFsééééééééééééééééééééé..17

3.6 Application of BRDFsééééééééééééééééééééé......17

3.7 Features of BRDF modelsééééééééééééééééééé...é..17

4.0 Conclusionéééééééééééééééééééééééééééé...é..17

5.0 Summaryéééééééééééééééééééééééééééé...é....18

6.0 Tutor Marked Assignmentééééééééééééééééééééé...é......18

7.0 References/Further

Readingééééééééééééééééééééééééé....éé.18

12

1.0 Introduction to Bi-directional Reflection Distribution Function (BRDF)

One of the most general means to characterize the reflection properties of a surface is by use of the

bi-directional reflection distribution function (BRDF), a function which defines the spectral and

spatial reflection characteristic of a surface. The BRDF of a surface is the ratio of reflected radiance

to incident irradiance at a particular wavelength:

where the subscripts i and r denote incident and reflected respectively, is the direction

of light propagation, is the wavelength of light, L is radiance, and E is irradiance.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the BRDFs

2. Understand the application of BRDFs

3. Understand the features of BRDF models.

3.0 Main Content

3.1 An overview of the BRDF

To understand the concept of a BRDF and how BRDFs can be used to improve realism in

interactive computer graphics, we begin by discussing what we know about light and how light

interact with matter. In general, when light interacts with matter, a complicated light-matter

dynamic occurs. This interaction depends on the physical characteristics of the light as well as the

physical composition and characteristics of the matter. For example, a rough opaque surface such

as sandpaper will reflect light differently than a smooth reflective surface such as a mirror. Figure

1.2(a) shows a typical light-matter interaction scenario.

13

Figure 1.2(a): Light Interactions.

From this figure, we make a couple of observations about light. First, when light makes contact

with a material, three types of interactions may occur: light reflection, light absorption, and light

transmittance. That is, some of the incident light is reflected, some of the light is transmitted, and

another portion of the light is absorbed by the medium itself.

Light incident at surface = light reflected + light absorbed + light transmitted

For opaque materials, the majority of incident light is transformed into reflected light and absorbed

light. As a result, when an observer views an illuminated surface, what is seen is reflected light, i.e.

the light that is reflected towards the observer from all visible surface regions. A BRDF describes

how much light is reflected when light makes contact with a certain material. Similarly, a BTDF

(Bi-directional Transmission Distribution Function) describes how much light is transmitted when

light makes contact with a certain material.

In general, the degree to which light is reflected (or transmitted) depends on the viewer and light

position relative to the surface normal and tangent. Consider, for example, a shiny plastic teapot

illuminated by a white point light source. Since the teapot is made of plastic, some surface regions

will show a shiny highlight when viewed by an observer. If the observer moves (i.e. changes view

direction), the position of the highlight shifts. Similarly, if the observer and teapot both remain

fixed, but the light source is moved, the highlight shifts. Since a BRDF a measure how light is

reflected, it must capture this view and light-dependent nature of reflected light. Consequently, a

BRDF is a function of incoming (light) direction and outgoing (view) direction relative to a local

orientation at the light interaction point.

Additionally, when light interacts with a surface, different wavelengths (colours) of light may be

absorbed, reflected, and transmitted to varying degrees depending upon the physical properties of

the material itself. This means that a BRDF is also a function of wavelength.

14

Finally, light interacts differently with different regions of a surface. This property, known as

positional variance, is most noticeably observed in materials such as wood that reflect light in a

manner that produces surface detail. Both the ringing and striping patterns often found in wood are

indications that the BRDF for wood varies with the surface spatial position. Many materials exhibit

this positional variance because they are not entirely composed of a single material. Instead, most

real world materials are heterogeneous and have unique material composition properties which vary

with the density and stochastic characteristics of the sub-materials from which they are comprised.

Considering the dependence of a BRDF on the incoming and outgoing directions, the wavelength

of light under consideration, and the positional variance, a general BRDF in functional notation can

be written as

Where ‗ is used to indicate that the BRDF depends on the wavelength under consideration, the

parameters ‰Ὥȟ— i represent the incoming light direction in spherical coordinates, the

parameters ‰ȟ—0 represent the outgoing reflected direction in spherical coordinates, and u and v

represent the surface position parameterized in texture space

Though a BRDF is truly a function of position, sometimes the positional variance is not included in

a BRDF description. Instead, it is common to see a BRDF written as a function of incoming and

outgoing directions and wavelength only (i.e. ἌἠἎἐⱦ (Ᵽ░ꜚ ░Ᵽꜚ Such BRDFs are often called

position-invariant or shift-invariant BRDFs. When the spatial position is not included as a

parameter to the function, an assumption is made that the reflectance properties of a material do not

vary with spatial position. In general, this is only valid for homogenous materials. One way to

introduce the positional variance is through the use of a detail texture. By adding or modulating the

result of a BRDF lookup with a texture, it is possibly to reasonably approximate a spatially variant

BRDF.

For the remainder of this unit, we will denote a position-invariant BRDF in functional notation as

ἌἠἎἐⱦ (Ᵽ░ꜚ ░Ᵽꜚ
where ‰Ὥȟ—i, ‰ȟ—0 have the same meaning as before.

When describing a BRDF in this functional notation, it is sometimes convenient to omit the

‗ subscript for the sake of notation simplicity. When this is done, keep in mind that the values

produced by a BRDF do depend on the wavelength or colour channel under consideration. In

practice what this means is that in terms of the RGB colour convention, the value of the BRDF

function must be determined separately for each colour channel (i.e. R, G, and B separately). For

convenience, itôs usually preferred not to specify a particular colour channel in the subscript. The

15

implicit assumption is that the programmer knows that a BRDF value must be determined for each

colour channel of interest separately. Given this slightly abbreviated form, the position-invariant

BRDF associated with a single colour channel can be considered to be a function of 4 variables.

When the RGB colour components are considered as a group, the BRDF is a three-component

vector function.

3.2 The Definition of a BRDF

Up until this point, the exact definition of a BRDF has not been discussed. Suppose we are given an

incoming light direction, wi, and an outgoing reflected direction, wo, each defined relative to a small

surface element. A BRDF is defined as the ratio of the quantity of reflected light in direction wo, to

the amount of light that reaches the surface from direction wi. To make this clear, letôs call the

quantity of light reflected from the surface in direction wo, Lo, and the amount of light arriving from

direction wi, Ei. Then a BRDF is given by

Figure 1.2(b): A surface element illuminated by a light source.

Now consider figure 1.2(b). The figure shows a small surface element (i.e. a pixel/surface point)

that is being illuminated by a point light source. The amount of light arriving from direction wi is

proportional to the amount of light arriving at the differential solid angle. Suppose the light source

in the figure has intensity Li. Since the differential solid angle is small, it is essentially a flat region

on the hemisphere. As a result, the region is uniformly illuminated as the same quantity of light, Li,

arrives for each position on the differential solid angle. So the total amount of incoming light

arriving through the region is Li*dw. The only problem is that this amount of light is with respect to

the differential solid angle and not the actual surface element under consideration. To determine the

amount of light with respect to the surface element, the incoming light must be ñspread outò or

projected onto the surface element. This projection is similar to that which happens with diffuse

Lambertian lighting and is accomplished by modulating that amount by cos —i = N * wi. This

means

As a result, a BRDF is given by

Equation 1.2

16

From this definition, observe two interesting results. First, a BRDF is not bounded to the range [0,

1] ï a common misconception about BRDFs. Although the ratio Lo to Li must be in [0, 1], the

division by the cosine term in the denominator implies that a BRDF may have values larger than 1.

Secondly, a BRDF is not a unit-less function. Since the BRDF definition above includes a division

by the solid angle (which has units steradians (sr)), the units of a BRDF are inverse steradians (sr-1).

3.3 Classes and Properties of BRDFs

There are two classes of BRDFs and two important properties. BRDFs can be classified into two

classes: isotropic BRDFs and anisotropic BRDFs. The two important properties of BRDFs are

reciprocity and conservation of energy.

The term óisotropicô is used to describe BRDFs that represent reflectance properties that are

invariant with respect to rotation of the surface around the surface normal vector. Consider a small

relatively smooth surface element and fix the light and viewer positions. If we were to rotate the

surface about its normal, the BRDF value (and consequently the resulting illumination) would

remain unchanged. Materials with this characteristic such as smooth plastics have isotropic BRDFs.

Anisotropy, on the other hand, refers to BRDFs that describe reflectance properties that do exhibit

change with respect to rotation of the surface around the surface normal vector. Some examples of

materials that have anisotropic BRDFs are brushed metal, satin, and hair. In general, most real-

world BRDFs are anisotropic to some degree, but the notion of isotropic BRDFs is useful because

many classes of analytical BRDF models fall within this class. In general, most real-world BRDFs

are probably more isotropic than anisotropic though many real-world surfaces have subtle

anisotropy. Any material that exhibits even the slightest anisotropic reflection has a BRDF that is

anisotropic. BRDFs based on physical laws and considered to be physically plausible have two

properties: reciprocity and conservation of energy.

17

Figure 1.2(c): The Reciprocity Principle

The reciprocity property is illustrated in figure 1.2(c). Basically it says that if the sense of the

traveling light is reversed, the value of the BRDF remains unchanged. That is, if the incoming and

outgoing directions are swapped, the value of the BRDF does not change. Mathematically, this

property is written as

Figure 1.2(d): Conservation of Energy- The quantity of light reflected must be less than

 or equal to the quantity of incident light.

The conservation of energy constraint has to do with the scattering of light during the light-matter

interaction. In general, this property states that when light from a single incoming direction makes

contact with a surface and is reflected/scattered over the sphere of outgoing directions, the total

quantity of light that is scattered cannot exceed the original quantity of light arriving at the surface.

Figure 1.2(d) illustrates this property. For each one unit of light energy that arrives at a point, no

more than one unit of light energy can be reflected in total to all possible outgoing directions.

By considering the definition of a BRDF (the ratio of the reflected light to incident light divided by

the projected solid angle), this means the sum over all outgoing directions of the BRDF times the

projected solid angle must be less than one in order for the ratio of the total amount of reflected

light to the incident light to be less than one. Mathematically, this is written as

18

When considering the continuous hemisphere of all outgoing reflected directions, the sum becomes

an integral and this conservation property becomes

3.4 Related functions

1. The Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)

is a 6-dimensional function, , where describes a 2D location over an

object's surface.

2. The Bidirectional Texture Function (BTF) is appropriate for modeling non-flat

surfaces, and has the same parameterization as the SVBRDF; however in contrast, the

BTF includes non-local scattering effects like shadowing, masking, inter-reflections or

subsurface scattering. The functions defined by the BTF at each point on the surface are

thus called Apparent BRDFs.

3. The Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF),

is a further generalized 8-dimensional function in which light

entering the surface may scatter internally and exit at another location.

In all these cases, the dependence on wavelength has been ignored and binned into RGB channels.

In reality, the BRDF is wavelength dependent, and to account for effects such as iridescence or

luminescence the dependence on wavelength must be made explicit: fr(ɚi,ɤi,ɚo,ɤo).

3.5 Physically based BRDFs

Physically based BRDFs have additional properties, including,

http://en.wikipedia.org/wiki/Bidirectional_texture_function
http://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function
http://en.wikipedia.org/wiki/Iridescence
http://en.wikipedia.org/wiki/Luminescence

19

1. positivity:

2. Obeying Helmholtz reciprocity: fr(ɤi,ɤo) = fr(ɤo,ɤi).

3. conserving energy:

3.6 Applications of BRDF

The BRDF is a fundamental radiometric concept, and used in computer graphics for photorealistic

rendering of synthetic scenes, as well as in computer vision for many inverse problems such as

object recognition.

3.6 Features of BRDF models

BRDFs can be measured directly from real objects using calibrated cameras and light sources;

however, many phenomenological and analytic models have been proposed including the

Lambertian reflectance model frequently assumed in computer graphics. Some useful features of

recent models include:

1. accommodating anisotropic reflection

2. editable using a small number of intuitive parameters

3. accounting for Fresnel effects at grazing angles

4. being well-suited to Monte Carlo methods.

4.0 Conclusion

This unit has presented some of the basic terminologies and concepts about BRDFs, its applications

and useful features of recent models. The degree to which light is reflected (or transmitted) depends

on the viewer and light position relative to the surface normal and tangent. BRDF is also a function

of wavelength.

5.0 Summary

The bidirectional reflectance distribution function is a four-dimensional function that defines how

light is reflected at an opaque surface and accordingly is used in computer graphics for

photorealistic rendering of synthetic scenes, as well as in computer vision for many inverse

problems such as object recognition.

6.0 Tutor Marked Assignment

1. What do you understand by BRDF?

2. Identify Application areas and features of BRDFs.

3. Explain the classes and properties of BRDFs

4. Highlight the features of BRDF models.

http://en.wikipedia.org/wiki/Helmholtz_reciprocity
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Anisotropic
http://en.wikipedia.org/wiki/Fresnel_equations
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision

20

5. Differentiate between Isotropic BRDF and Anisotropic BRDF.

7.0 References/Further Reading

1. Jeffr Ward, Gregory J. (1992). "Measuring and modeling anisotropic reflection".

Proceedings of SIGGRAPH. pp. 265ï272.

2. S.K. Nayar and M. Oren, "Generalization of the Lambertian Model and Implications for

Machine Vision". International Journal on Computer Vision, Vol. 14, No. 3, pp. 227ï

251, Apr, 1995

3. Michael Ashikhmin, Peter Shirley (2000), An Anisotropic Phong BRDF Model, Journal

of Graphics Tools 2000

4. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

5. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

MODULE 1 ï Introduction to Computer Graphics and Animation

UNIT 3: Vectors and dot Products

Contents Pages

1.0 Introduction to vectorsééééééééééééééééééééééééé..20

2.0 Objectiveséééééééééééééééééééééééééééééé..20

3.0 Main Contentéééééééééééééééééééééééé....ééé.....20

 3.1 Adding vectors and pointséé.éé.éééééééééééé.éééé..20

3.2 Other Vector Operationséééééééééééééééééé...éé...éé..21

3.3 Dot productséééééééééééééééééééé...é...................21

3.4 Properties of Dot products éééééééééééééééééééé....22

3.5 Cross productsééééééééééééééééééééééééé....23

3.6 Properties of cross productséééééééééééééééééééé...23

4.0 Conclusionéééééééééééééééééééééééééééééé..24

5.0 Summaryééééééééééééééééééééééééééééééé.24

http://www1.cs.columbia.edu/CAVE/publications/pdfs/Nayar_IJCV95.pdf
http://www1.cs.columbia.edu/CAVE/publications/pdfs/Nayar_IJCV95.pdf

21

6.0 Tutor Marked Assignmentééééééééééééééééééééééé......24

7.0 References/Further

Readingéééééééééééééééééééééééééé.éé.25

1.0 Introduction to Vectors

Vectors are geometric objects that have a length and a direction. We can also talk about a vector's

tail (where it begins) and head (where it ends up). A vector is like a point, in that it is described by

a set of coordinates in a given dimension. But there are differences:

1. A point has an absolute position within a coordinate system. A vector has no position;

the same vector can appear anywhere.

2. A point has no dimension to it. A vector has a length as well as a direction.

Vectors are very important in computer graphics. For example, they are needed to:

1. Analyze shapes: find the point at which two lines intersect, the distance of a point to a

line, or whether a shape is convex or concave.

2. Determine visibility: find objects closest to the eye (ray tracing) or determine whether a

plane is facing away from us (back-face culling).

3. Calculate lighting effects: determine how much light hits a surface (illumination), how

much of that light is seen by the viewer (reflection), and what other objects are reflected

in that surface (ray tracing).

2.0 Objectives

22

On completing this unit, you would be able to:

1. Understand the what vectors are

2. Understand dot products and cross products

3. Understand vector operators and how to utilize them.

4. Understand the properties of Dot and Cross Products of vectors

3.0 Main Content

3.1 Adding vectors and points

Points and vectors can be used to define one another by adding and subtracting the coordinates.

Given that P and Q are points and u and v are vectors, then

1. P - Q is a vector with its tail at Q and its head at P

2. P + v is a new point (P displaced by the quantities in v)

3. u + v is another vector

Coordinates are added and subtracted as follows:

If a = (ax, ay, az) and b = (bx, by, bz) then

a + b = (ax+ bx, ay+ by, az+ bz) and a - b = (ax - bx, ay - by, az - bz).

For example, consider the illustration at left. Imagine that R

= (2, 3, 1), Q = (4, 1, 1), and P = (7, 3, 1). Then

1. u = Q - R = (2, -2, 0) and Q = R + u

2. v = P - Q = (3, 2, 0) and P = Q + v

u + v = (Q - R) + (P - Q) = P - R = (5, 0, 0)

3.2 Other vector operations

You can change the length of a vector by multiplying it with a scalar value. Given a scalar value s

and a vector v = (vx, vy, vz) then sv = (svx, svy, svz). For example, if s = 0.5 and v = (4, 3, 0) then sv =

(2, 1.5, 0).

23

You can find the length (or magnitude) of a vector using the Pythagorean Theorem. Given a vector

v = (vx, vy, vz), the magnitude of v is |v| = sqrt(vx*vx, vy*vy, vz*vz). For example, if v = (4, 3, 0) then |v|

= 5.

A unit vector is a vector of length 1. For any vector, you can find a corresponding unit vector (with

the same direction) by dividing each of the coordinate values by the magnitude of the original

vector. In other words, given a vector v = (vx, vy, vz), the unit vector is (vx / |v|, vy / |v|, vz / |v|). For

example, if v = (4, 3, 0) then the unit vector with the same direction is (4/5, 3/5, 0/5) = (0.8, 0.6, 0).

3.3 Dot product

The dot (or inner) product of 2 vectors produces a scalar value. The dot product is used to solve a

number of important geometric problems in graphics. The dot product for 3-dimensional vectors is

solved as follows:

If u = (ux, uy, uz) and v = (vx, vy, vz) then

uÅ v = uxvx + uyvy + uzvz.

3.4 Properties of Dot products

The dot product has the following properties:

1. Symmetry: u Å v = v Å u

2. Linearity: (u + w) Å v = (u Å v) + (w Å v)

3. Homogeneity: (su) Å v = s(u Å v)

4. |v| = sqrt(v Å v)

The dot product can be used to determine the angle between two

vectors.

From the Pythagorean Theorem, we know that

cos ɗ = ux / |u| and ux = cos ɗ* |u|

sinɗ = uy / |u| and uy = sinɗ* |u|

24

Therefore,

u Å v = cosɗ|u|cosű|v| + sinɗ|u|sinű|v|

= |u||v|(cosɗcosű + sinɗsinű)

= |u||v|cos(ɗ-ű)

And so,

cos(ɗ-ű) = (u Å v) / (|u||v|)

There is no need to calculate the exact cosine to know

whether the angle is acute, obtuse, or a right angle.

Because |u||v| is always a positive value, the sign of

cos(ɗ-ű) will take on the sign of uÅ v. So,

uÅ v > 0 implies the angle is acute (-90Á < (ɗ-ű) < 90Á);

uÅ v < 0 implies the angle is obtuse (90Á < (ɗ-ű) < 270Á); and

uÅ v = 0 implies the angle is right ((ɗ-ű) = 90Á or (ɗ-ű) = -90°), i.e. the vectors are perpendicular.

3.5 Cross Product

The cross (or vector) product of 2 vectors produces another vector which is perpendicular

(orthogonal) to both of the vectors used to find it.

The cross product is defined in terms of the standard unit vectors i, j, and k, where

1. i = (1, 0, 0)

2. j = (0, 1, 0)

3. k = (0, 0, 1)

25

The cross product for 3-dimensional vectors is then solved as follows:

If u = (ux, uy, uz) and v = (vx, vy, vz) then

u x v = ((uyvz - uzvy)i + (uzvx - uxvz)j + (uxvy - uyvx)k).

This form can be hard to remember, and so we can also write the cross product as a determinant:

 i j K

u x v =

 ux uy Uz

 vx vy Vz

3.6 Properties of Cross Products

The cross product has the following properties:

1. Antisymmetry: u x v = -v x u

2. Linearity: u x (v + w) = (u x v) + (u x w)

3. Homogeneity: (su) x v = s(u x v)

4. i x j = k ; j x k = i ; k x i = j

The result of u x v is a vector that is perpendicular (orthogonal) to both u and v.

The result of u x v follows the right-hand rule:

1. Place your right hand at u and curl your fingers toward v. Your hand should be

enclosing the smaller angle (<= 180°) between u and v.

2. Stick out your thumb: it points in the direction of u x v.

The length of u x v equals the area of the parallelogram determined by u and v, which is

|u x v| = |u||v| * sinɗ

where ɗ is the angle from u to v or v to u (whichever is less).

4.0 Conclusion

Vector graphics editors typically allow rotation, movement, mirroring, stretching, skewing, affine

transformations, changing of z-order and combination of primitives into more complex objects.

More sophisticated transformations include set operations on closed shapes (union, difference,

intersection, etc.).

5.0 Summary

26

In Vectors are geometric objects that have a length and a direction. Vectors are very important in

computer graphics to analyze shapes, Determine visibility and Calculate lighting effects.

6.0 Tutor Marked Assignment

1. What do you understand by vectors? Differentiate between vectors and scalars.

2. Identify the properties of Cross products and Dot products of vector

3. Try these problems to test your understanding of this material.

1. For each of the following, calculate the coordinates. Indicate whether the result is a

point or a vector.

1. v + u, where v = (-1, 0, 5) and u = (2, 1, 1)

2. P + v, where P = (1, 2, 3) and v = (-1, -2, -3)

3. P - Q, where P = (5, 5, 5) and Q = (1, 2, 3)

2. For each of the following, calculate sv and |sv| when

1. s = 3, v = (1, 1, 1)

2. s = 0.25, v = (-4, 8, 2)

3. For each of the following vectors v and u, calculate the dot product. What does the

result tell you about the angle between the vectors?

1. v = (1, 0, 0) and u = (0, 1, 0)

2. v = (1, 1, -1) and u = (2, 1, 0)

3. v = (-2, 0, 0) and u = (1, 1, 1)

4. Calculate the unit normal vector for the polygon defined by points P0 = (1, 1, 1), P1 =

(5, 1, 4) and P2 = (2, 1, 1).

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical

Guide, 4th edition, Academic Press, San Diego, 1996. ISBN-13: 978-

0122490545

4. J.D. Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley,

Reading, Mass., 1990. ISBN-13: 978-0201848403

27

MODULE 2 ï Transformations, Camera models, Rasterization and Mapping techniques

UNIT 1: Transformations.

Contents Pages

1.0 Introduction to transformationséééééééééééééééééééééé27

2.0 Objectiveséééééééééééééééééééééééééééééé..27

3.0 Main Contentéééééééééééééééééééééééé....ééé.....27

 3.1 2D transformationsé.é.ééééééééééééééééééééé..27

3.2 Affine transformationsééééééééééééééé...ééééééééé29

28

3.3 Homogenous coordinatesééééééééééééééééé...é.......é30

3.4 Uses and Abuses of Homogeneous Coordinateséééééééééééé.31

3.5 Hierarchical transformationséééééééééééééééééééé.33

3.6 Transformations in openGLéééééééééééééééééééé..33

4.0 Conclusionéééééééééééééééééééééééééééééé.35

5.0 Summaryééééééééééééééééééééééééééééééé35

6.0 Tutor Marked Assignmentééééééééééééééééééééééé.....35

7.0 References/Further

Readingéééééééééééééééééééééééééé.éé35

1.0 Introduction to Transformations

Transformations are one of the primary vehicles used in computer graphics to manipulate objects in

three-dimensional space. Their development is motivated by the process of converting coordinates

between frames, which results in the generation of a 4x4 matrix. We can generalize this process and

develop matrices that implement various transformations in space.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand how transformations work

2. Differentiate between 2D and 3D transformations

29

3. Identify classes of transformations.

3.0 Main Content

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several

purposes:

1. Change coordinate frames (world, window, viewport, device, etc).

2. Compose objects of simple parts with local scale/position/orientation of one part

defined with regard to other parts. For example, articulated objects.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:

i. Rigid body - Preserves distance and angles.

Examples: translation and rotation.

ii. Conformal - Preserves angles.

Examples: translation, rotation, and uniform scaling.

iii. Affine - Preserves parallelism. Lines remain lines.

Examples: translation, rotation, scaling, shear, and reflection.

Examples of transformations:

1. Translation by Vector ᴼ : ὖ= ὖ+ ᴼ

1. Rotation by Clockwise

30

2. Uniform Scaling by Scalar :

4ÙÐÅ ÅÑÕÁÔÉÏÎ ÈÅÒÅȢ

3. Non-uniform Scaling by a and b:

4. Shear by Scalar h:

5. Reflection about the y-axis:

3.2 Affine Transformations

An affine transformation takes a point p̄ to q̄ according to a linear

transformation followed by a translation. You should understand the following proof

Å The inverse of an affine transformation is also affine, assuming it exists.

Proof:

31

 Note:

The inverse of a 2D linear transformation is

Å Lines and parallelism are preserved under affine transformations.

 Proof:

Å Given a closed region, the area under an affine transformation

Note:

Example:

The matrix maps all points to the x-axis, so the area of any closed region will become

Zero. We have det(A) = 0, which verifies that any closed regionôs area will be scaled by zero

Å A composition of affine transformations is still affine.

32

3.3 Homogeneous Coordinates

Homogeneous coordinates are another way to represent points to simplify the way in which we

express affine transformations. Normally, bookkeeping would become tedious when affine trans-

formations of the form are composed. With homogeneous coordinates, affine

transformations become matrices, and composition of transformations is as simple as matrix

multiplication. In future sections of the course we exploit this in much more powerful ways.

With homogeneous coordinates, a point p̄ is augmented with a 1, to form

All points (Ŭp̄, Ŭ) represent the same point p̄ for real ŬÍ0

Given pĔ in homogeneous coordinates, to get p̄, we divide pĔ by its last component and discard the

last component.

Example:

The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point

(1, 2). Itôs the orientation of pĔ that matters, not its length.

Many transformations become linear in homogeneous coordinates, including affine

transformations.

To produce qĔ rather than q̄, we can add a row to the matrix:

This is linear! Bookkeeping becomes simple under composition.

33

1

With homogeneous coordinates, the following properties of affine transformations become

apparent:

1. Affine transformations are associative.

For affine transformations F1, F2, and F3,

(F3 Ј F2) Ј F1 = F3 Ј (F2 Ј F1).

2. Affine transformations are not commutative.

For affine transformations F1 and F2,

F2 Ј F1 = F1 Ј F2.

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot

be treated in quite the same way. For example, consider the midpoint between two points p̄1 =

(1, 1) and p̄2 = (5, 5). The midpoint is (p̄1 + p̄2)/2 = (3, 3). We can represent these points in

homogeneous coordinates as pĔ1 = (1, 1, 1) and pĔ2 = (5, 5, 1). Directly applying the same

computation as above gives the same resulting point: (3, 3, 1).

However, we can also represent these points as pĔƶ = (2, 2, 2) and pĔƶ= (5, 5, 1). We then have

(pĔƶ+pĔƶ)/2 =(7/2, 7/2, 3/2) which corresponds to the Cartesian point (7/3, 7/3). This is a

different point, and illustrates that we cannot blindly apply geometric operations to homogeneous

coordinates. The simplest solution is to always convert homogeneous coordinates to Cartesian

coordinates. That said, there are several important operations that can be performed correctly in

terms of homogeneous coordinates, as follows.

3.4.1 Affine transformations:

An important case in the previous section is applying an affine trans- formation to a point in

homogeneous coordinates:

34

It is easy to see that this operation is correct, since rescaling pĔ does not change the result:

Which is the same geometric point as qĔ = (xǋ, yǋ,1)T

3 . 4 . 2 Vectors: We can represent a vector in homogeneous coordinates by setting

the last element of the vector to be zero: However, when adding a vector to a

point, the point must have the third component to be 1.

The result is clearly incorrect if the third component of the vector is not 1

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchically connected parts. For example, a robot arm

might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the

upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would affect

the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper

arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the

palm would be the parent to all of the fingers.

Homogeneous coordinates are a representation of points in projective geometry.

35

Each part in the hierarchy can be modeled in its own local coordinates, independent of the other

parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and

so on. Rigid body transformations are then applied to each part relative to its parent to achieve

the proper alignment and pose of the object. For example, the fingers are positioned to be in the

appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm

coordinates, and the process continues up the hierarchy. Then a transformation applied to upper

arm coordinates is also applied to all parts down the hierarchy.

3.6 Transformations in OpenGL

OpenGL manages two 4 × 4 transformation matrices: the modelview matrix, and the projection

matrix. Whenever you specify geometry (using glVertex), the vertices are transformed by the

current modelview matrix and then the current projection matrix. Hence, you donôt have to perform

these transformations yourself. You can modify the entries of these matrices at any time. OpenGL

provides several utilities for modifying these matrices. The modelview matrix is normally used to

represent geometric transformations of objects; the projection matrix is normally used to store the

camera transformation. For now, weôll focus just on the modelview matrix, and discuss the camera

transformation later.

To modify the current matrix, first specify which matrix is going to be manipulated: use

glMatrixMode (GL MODE) to modify the modelview matrix. The modelview matrix can then

be initialized to the identity with glLoadIdentity() . The matrix can be manipulated by

directly filling its values, multiplying it by an arbitrary matrix, or using the functions OpenGL

provides to multiply the matrix by specific transformation matrices (glRotate , glTranslate ,

and glScale). Note that these transformations right -multiply the current matrix; this can be

confusing since it means that you specify transformations in the reverse of the obvious order.

OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the

modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and

popping matrices on the stack. The following example draws an upper arm and forearm with

shoulder and elbow joints. The current model view matrix is pushed onto the stack and popped

at the end of the rendering, so, for example, another arm could be rendered without the

36

transformations from rendering this arm affecting its model view matrix. Since each OpenGL

transformation is applied by multiplying a matrix on the right-hand side of the modelview matrix,

the transformations occur in reverse order. Here, the upper arm is translated so that its shoulder

position is at the origin, then it is rotated, and finally it is translated so that the shoulder is in its

appropriate world-space position. Similarly, the forearm is translated to rotate about its elbow

position, and then it is translated so that the elbow matches its position in upper arm coordinates.

Below is a program written in OpenGL that implements what has been illustrated above.

OpenGL Program:
glPus

hMatr

ix();

glTranslatef(worldShoulderX, worldShoulderY,

0.0f);

drawShoulde

rJoint();

glRotatef(shoulderRotation, 0.0f, 0.0f,

1.0f);

glTranslatef(- upperArmShoulderX, - upperArmShoulderY,

0.0f);

drawUpperAr

mShape();

glTranslatef(upperArmElbowX, upperArmElbowY,

0.0f);

drawElbowJoint();

glRotatef(elbowRotation, 0.0f, 0.0f, 1.0f);

glTranslatef(- forearmElbowX, - forearmElbowY, 0.0f);

drawForearmShape();

glPopMatrix();

4.0 Conclusion

Transformation can change vectors in a variety of ways that are useful. In particular, it can be used

to scale, rotate, and shear. Every matrix can be decomposed via SVD into a rotation times a scale

times another rotation. An important class of transforms is rigid-body transforms. These are

composed only of translations and rotations, so they have no stretching or shrinking of the objects.

Such transforms will have a pure rotation.

5.0 Summary

37

Transformations are used to manipulate objects in three-dimensional space. The three basic classes

of transformations are rigid body, conformal and affine transformations.

6.0 Tutor Marked Assignment

1.0 Explain how transformations work

2.0 What is affine transformation?

3.0 Identify and explain various classes of transformations with diagrams

4.0 What is 3D transformation?

5.0 Explain projective transformations.

6.0 Explain the following terms in Transformation

i. Rotation

ii. Scaling

iii. Shearing

iv. Reflection and

v. Orthogonal projections.

7.0 References/Further Reading

1. http://en.wikipedia.org/wiki/Transformation_matrix

2. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

3. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

MODULE 2 ï Transformations, camera models, rasterization and mapping techniques

UNIT 2: Camera Models

Contents Pages

1.0 Introduction to camera modelséééééééééééééééééééééé.37

2.0 Objectiveséééééééééééééééééééééééééééééé.37

3.0 Main Contentéééééééééééééééééééééééé....ééé....37

38

 3.1 The thin lens modeléé.ééé.éééééééééééééééééé37

3.2 Pinhole camera modeléééééééééééééééééééééééé..38

3.3 Camera projectionsééééééééééééééééé...é....................39

3.4 Orthographic projectionsééééééééééééééééééééé..40

3.5 Camera position and orientationéééééééééééééééééé..41

3.6 Perspective projectionéééééééééééééééééééééé..43

3.7 Homogenous projectionééééééééééééééééééééé...45

3.8 Pseudodepthéééééééééééééééééééééééééé46

3.9 Projecting a triangleééééééééééééééééééééééé.47

3.10 Camera projections in openGLééééééééééééééééééé50

4.0 Conclusionééééééééééééééééééééééééééééé...51

5.0 Summaryéééééééééééééééééééééééééééééé..51

6.0 Tutor Marked Assignmentééééééééééééééééééééééé...51

7.0 References/Further

Readingéééééééééééééééééééééééééé.é..51

1.0 Introduction to camera models

Most modern cameras use lens to focus light onto the view plane (i.e., the sensory surface). This is

done so that one can capture enough light in a sufficiently short period of time that the objects do not

move appreciably, and the image is bright enough to show significant detail over a wide range of

intensities and contrasts.

In a conventional camera, the view plane contains either photo-reactive chemical; in a digital

camera, the view plane contains a charge-coupled device (CCD) array. (Some cameras use a

39

CMOS-based sensor instead of a CCD). In the human eye, the view plane is a curved surface called

the retina, and contains a dense array of cells with photo-reactive molecules.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the Thin lens and Pin-hole Camera Models.

2. Understand Projections

3. Understand projections of a triangle.

3.0 Main Content

3.1 Thin Lens Model

Lens models can be quite complex, especially for compound lens found in most cameras. Here we

consider perhaps the simplest case, known widely as the thin lens model. In the thin lens model,

rays of light emitted from a point travel along paths through the lens, converging at a point behind

the lens. The key quantity governing this behaviour is called the focal length of the lens. The

focal length, |f |, can be defined as distance behind the lens to which rays from an infinitely distant

source converge in focus.

Figure 2.2(a): Thin lens models

More generally, for the thin lens model, if z1 is the distance from the center of the lens (i.e., the

nodal point) to a surface point on an object, then for a focal length |f |, the rays from that surface

point will be in focus at a distance z0 behind the lens center, where z1 and z0 satisfy the thin lens

equation
 1

 |f |

1 1
= +

z0 z1

40

3.2 Pinhole Camera Model

The pinhole camera model describes the mathematical relationship between the coordinates of a

3D point and its projection onto the image plane of an ideal pinhole camera, where the camera

aperture is described as a point and no lenses are used to focus light. The model does not include,

for example, geometric distortions or blurring of unfocused objects caused by lenses and finite

sized apertures. It also does not take into account that most practical cameras have only discrete

image coordinates. This means that the pinhole camera model can only be used as a first order

approximation of the mapping from a 3D scene to a 2D image. Its validity depends on the quality

of the camera and, in general, decreases from the center of the image to the edges as lens distortion

effects increase.

Some of the effects that the pinhole camera model does not take into account can be compensated

for, for example by applying suitable coordinate transformations on the image coordinates, and

others effects are sufficiently small to be neglected if a high quality camera is used. This means that

the pinhole camera model often can be used as a reasonable description of how a camera depicts a

3D scene, for example in computer vision and computer graphics.

A pinhole camera is an idealization of the thin lens as aperture shrinks to zero.

view plane

infinitesimal

pinhole

Figure 2.2(b): Light from a point travels along a single straight path through a pinhole onto the

view plane. The object is imaged upside-down on the image plane.

We use a right-handed coordinate system for the camera, with the x-axis as the horizontal direction

and the y-axis as the vertical direction shown in figure 2.2(c) . This means that the optical axis

(gaze direction) is the negative z-axis.

y

-z

x

41

z

Figure 2.2(c): the right-hand coordinate.

The image you would get corresponds to drawing a ray from the eye position and intersecting it

with the window. This is equivalent to the pinhole camera model, except that the view plane is in

front of the eye instead of behind it, and the image appears right side-up, rather than upside down.

(The eye point here replaces the pinhole). To see this, consider tracing rays from scene points

through a view plane behind the eye point and one in front of it.

The earliest cameras were room-sized pinhole cameras, called camera obscuras. You would

walk in the room and see an upside-down projection of the outside world on the far wall.

The word camera is Latin for ñroom;ò camera obscura means ñdark room.ò

Figure 2.2(d): 18th-century camera obscuras. The camera on the right uses a mirror in the roof to

project images of the world onto the table, and viewers may rotate the mirror.

3.3 Camera Projections

Consider a point p̄ in 3D space oriented with the camera at the origin, which we want to project

onto the view plane. To project py to y, we can use similar triangles to get.

This is perspective projection.

Note that f < 0, and the focal length is |f |.

In perspective projection, distant objects appear smaller than near objects:

p
z

y

p
y

z

42

f
pinhole image

Figure 2.2 (e): Perspective Projection

3.4 Orthographic Projection

For objects sufficiently far away, rays are nearly parallel, and variation in pz is insignificant.

Figure 2.2(f): Here, the baseball players appear to be about the same height in pixels, even

though the batter is about 60 feet away from the pitcher. Although this is an example of

perspective projection, the camera is so far from the players (relative to the camera focal length)

that they appear to be roughly the same size.

In the limit, y = Ŭpy for some real scalar Ŭ. This is orthographic projection:

y

z

image

Figure 2.2(g): orthographic projection

3.5 Camera Position and Orientation

Assume camera coordinates have their origin at the ñeyeò (pinhole) of the camera, ē.

y v

u
g

e

w

43

x

z

 Figure 2.2(h): camera positioning

Let --g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera

z-axis) is

We need two more orthogonal vectors --u and --v to specify a camera coordinate frame, with

 ᴼand ᴼ parallel to the view plane. It may be unclear how to choose them directly. However, we

can instead specify an ñupò direction. Of course this up direction will not be perpendicular to the

gaze direction.

Let -- ᴼbe the ñupò direction (e.g., toward the sky so -- ᴼ= (0, 1, 0)). Then, we want --v to be the closest

vector in the view-plane to -- ᴼ. This is really just the projection of -- ᴼ onto the view plane.

Therefore, --u must be perpendicular to -- ᴼ and ᴼ. In fact, with these definitions it is easy to show that --

u must also be perpendicular to ᴼ, so one way to compute --u and --v from -- ᴼ and --g is as follows:

Of course, we could have used many different ñupò directions, so long as --t × w-- = 0.

Using these three basis vectors, we can define a camera coordinate system, in which 3D points are

represented with respect to the cameraôs position and orientation. The camera coordinate system

has its origin at the eye point ē and has basis vectors --u, --v, and w-- , corresponding to the x, y, and z

axes in the cameraôs local coordinate system. This explains why we chose w-- to point away from

the image plane: the right-handed coordinate system requires that z (and, hence, w--) point away

from the image plane.

Now that we know how to represent the camera coordinate frame within the world coordinate

frame we and need to explicitly formulate the rigid transformation from world to camera

44

coordinates. With this transformation and its inverse, we can easily express points either in world

coordinates or camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might be helpful to remember the mapping from

points in camera coordinates to points in world coordinates. For example, we have the following

correspondences between world coordinates and camera coordinates: Using such correspondences

Table 2.2: world coordinates and transformation coordinates

It is not hard to show that for a general point expressed in camera coordinates as the

corresponding point in world coordinates is given by

